Behavioral Ecology and Sociobiology

, Volume 62, Issue 6, pp 873–886 | Cite as

Female mate choice determines reproductive isolation between sympatric butterflies

  • Magne FribergEmail author
  • Namphung Vongvanich
  • Anna-Karin Borg-Karlson
  • Darrell J Kemp
  • Sami Merilaita
  • Christer Wiklund
Original Paper


Animal courtship rituals are important for species recognition, and a variety of cues might be utilized to recognize conspecific mates. In this paper, we investigate different species-recognition mechanisms between two sympatric butterfly sister species: the wood white (Leptidea sinapis) and Real’s wood white (Leptidea reali). We show that males of both species frequently court heterospecific females both under laboratory and field conditions. The long-lasting elaborate courtships impose energetic costs, since the second courtship of males that were introduced to two subsequent conspecific females lasted on average only one fourth as long as the first courtship. In this paper, we demonstrate that premating reproductive isolation is dependent on female unwillingness to accept heterospecific mates. We studied female and male courtship behavior, chemical signaling, and the morphology of the sexually dimorphic antennae, one of the few male traits visible for females during courtship. We found no differences in ultraviolet (UV) reflectance and only small differences in longer wavelengths and brightness, significant between-species differences, but strongly overlapping distributions of male L. sinapis and L. reali antennal morphology and chemical signals and minor differences in courtship behavior. The lack of clear-cut between-species differences further explains the lack of male species recognition, and the overall similarity might have caused the long-lasting elaborate courtships, if females need prolonged male courtships to distinguish between con- and heterospecific suitors.


Lepidoptera: Pieridae Species recognition Wing reflectance Courtship behavior Sexual signaling Pheromones 



We thank Bertil Borg, Karin Norén, Veronica Nyström and two anonymous reviewers for useful comments on earlier drafts of this manuscript, and Moa Lönn for illustrations. The study was funded by The Swedish Research Council to Christer Wiklund and Anna-Karin Borg-Karlson.


  1. Amiet JL (2004) Ecological niche partitioning between two sympatric sibling Leptidea species (Lepidoptera, Pieridae). Rev Ecol (Terre Vie) 59:433–452Google Scholar
  2. Andersson J, Borg-Karlson AK, Wiklund C (2003) Antiaphrodisiacs in pierid butterflies: a theme with variation!. J Chem Ecol 29:1489–1499PubMedCrossRefGoogle Scholar
  3. Andersson J, Borg-Karlson AK, Vongvanich N, Wiklund C (2007) Male sex pheromone release and female mate choice in a butterfly. J Exp Biol 210:964–970PubMedCrossRefGoogle Scholar
  4. Andersson M (1994) Sexual selection. Princeton University Press, Princeton, New JerseyGoogle Scholar
  5. Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton, New JerseyGoogle Scholar
  6. Beneš J, Konvika M, Vrabec V, Zámečník J (2003) Do the sibling species of small whites, Leptidea sinapis and L. reali (Lepidoptera, Pieridae) differ in habitat preferences. Biol Brat 58:943–951Google Scholar
  7. Brunton CFA (1998) The evolution of ultraviolet patterns in European Colias butterflies (Lepidoptera, Pieridae): a phylogeny using mitochondrial DNA. Heredity 80:611–616CrossRefGoogle Scholar
  8. Butlin RK (1995) Reinforcement—an idea evolving. Trends Ecol Evol 10:432–434CrossRefGoogle Scholar
  9. Costanzo K, Monteiro A (2007) The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc R Soc Lond, B 274:845–851CrossRefGoogle Scholar
  10. Coyne JA, Orr HA (1997) ‘Patterns of speciation in Drosophila’ revisited. Evolution 51:295–303CrossRefGoogle Scholar
  11. Dieckmann U, Doebeli M (2004) Adaptive dynamics of speciation: sexual populations. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D (eds) Adaptive speciation. CambridgeUniversity Press, Cambridge, UK, pp 76–111Google Scholar
  12. Eliasson CU, Ryrholm N, Holmer M, Jilg K, Gärdenfors U (2005) Nationalnyckeln till Sveriges flora och fauna Fjärilar: Dagfjärilar Hesperiidae-Nymphalidae. Uppsala, Sweden: Artdatabanken SLUGoogle Scholar
  13. Fordyce JA, Nice CC, Forister M, Shapiro AM (2002) The significance of wing pattern diversity in the Lycaenidae: mate discrimination by two recently diverged species. J Evol Biol 15:871–879CrossRefGoogle Scholar
  14. Forsberg J, Wiklund C (1989) Mating in the afternoon—time-saving in courtship and remating by females of a polyandrous butterfly Pieris napi L. Behav Ecol Sociobiol 25:349–356CrossRefGoogle Scholar
  15. Freese A, Fiedler K (2002) Experimental evidence for species distinctness of the two wood white butterfly taxa, Leptidea sinapis and L. reali (Pieridae). Nota lepid 25:39–59Google Scholar
  16. Friberg M, Bergman M, Kullberg J, Wahlberg N, Wiklund C (2007) Niche separation in space and time between two sympatric sister species—a case of ecological pleiotropy. Evol Ecol doi: 10.1007/s10682-007-9155-y
  17. Gavrilets S (2003) Models of speciation: What have we learned in 40 years? Evolution 57:2197–2215PubMedGoogle Scholar
  18. Gwynne DT (1991) Sexual competition among females: What causes courtship-role reversal? Trends Ecol Evol 6:118CrossRefGoogle Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Kemp DJ (2006) Heightened phenotypic variation and age-based fading of ultraviolet butterfly wing coloration. Evol Ecol Res 8:515–527Google Scholar
  21. Kemp DJ, Rutowski RL, Mendoza M (2005) Colour pattern evolution in butterflies: a phylogenetic analysis of structural ultraviolet and melanic markings in North American sulphurs. Evol Ecol Res 7:133–141Google Scholar
  22. Kemp DJ, Macedonia JM (2006) Structural ultraviolet ornamentation in the butterfly Hypolimnas bolina L. (Nymphalidae): visual, morphological and ecological properties. Aust J Zool 54:235–244CrossRefGoogle Scholar
  23. Kemp D, Vukusic JP, Rutowski R (2006) Stress mediated covariance between nanostructural architecture and ultraviolet butterfly colouration. Funct Ecol 20:282–289CrossRefGoogle Scholar
  24. Lorkovic´ Z (1993) “Leptidea reali REISSINGER 1989 (=lorkovicii REAL 1988), a new European species (Lepid., Pieridae). Nat Croat 2:1–26Google Scholar
  25. Löfstedt C, Herrebout WM, Menken SBJ (1991) Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecol 2:20–28CrossRefGoogle Scholar
  26. Marshall JL, Arnold ML, Howard DJ (2002) Reinforcement: the road not taken. Trends Ecol Evol 17:558CrossRefGoogle Scholar
  27. Martin J-F, Gilles A, Descimon H (2003) Species concepts and sibling species: the case of Leptidea sinapis and Leptidea reali. In: Boggs CL, Watt WB Ehrlich PR (eds) Butterflies—ecology and evolution—taking flight. University of Chicago Press, Chicago, Illinois, pp 459–476Google Scholar
  28. Mazel R (2002) Répartition géographique de Leptidea sinapis (L., 1758) et L. reali Reissinger, 1989 au nord de l’Europe, en Russie et dans quelqes pays d’Asie (Lepidoptera: Pieridae, Dismorphiinae). Linn Belg 18:373–376Google Scholar
  29. Mazel R (2005) Éléments de phylogénie dans le genre Leptidea Bilberg 1820 (Lepidoptera, Pieridae, Dismorphiinae). Rev l’Ass Roussill d’Entomol 14:98–111Google Scholar
  30. Mazel R, Eitschberger U (2003) Biogéographie de Leptidea reali Reissinger, 1989 en Europe et en Turquie/Die Verbreitung von Leptidea reali Reissinger, 1989 in Europa und in der Türkei. Rev l’Ass Roussill d’Entomol 12:91–109Google Scholar
  31. Obara Y (1964) Mating behaviour of the cabbage white, Pieris rapae crucivora II: the ‘mate-refusal’ posture of the female. Zool Mag 73:175–178Google Scholar
  32. Parker GA, Partridge L (1998) Sexual conflict and speciation. Philos Trans R Soc Lond, B 353:261–274CrossRefGoogle Scholar
  33. Pfennig KS, Pfennig DW (2005) Character displacement as the “best of a bad situation": Fitness trade-offs resulting from selection to minimize resource and mate competition. Evolution 59:2200–2208PubMedGoogle Scholar
  34. Phelan PL, Baker TC (1987) Evolution of male pheromones in moths—reproductive isolation through sexual selection. Science 235:205–207PubMedCrossRefGoogle Scholar
  35. Rundle HD, Schluter D (1998) Reinforcement of stickleback mate preferences: Sympatry breeds contempt. Evolution 52:200–208CrossRefGoogle Scholar
  36. Rutowski RL (1978) The courtship behaviour of the small sulphur butterfly, Eurema lisa. Anim Behav 26:892–903CrossRefGoogle Scholar
  37. Rutowski RL (1981) Courtship behavior of the dainty sulfur butterfly, Nathalis iole with a description of a new, facultative male display (Pieridae). J Res Lepid 20:161–169CrossRefGoogle Scholar
  38. Rutowski RL (1983) The wing-waving display of Eurema daira males (Lepidoptera: Pieridae): its structure and role in succssful courtship. Anim Behav 31:985–989CrossRefGoogle Scholar
  39. Rutowski RL (1985) Evidence for mate choice in a sulphur butterfly (Colias eurytheme). Z Tierpsychol 70:103–114Google Scholar
  40. Schluter D (1988) Character displacement and the adaptive divergence of finches on islands and continents. Am Nat 131:799–824CrossRefGoogle Scholar
  41. Silberglied RE, Taylor OR (1973) Ultraviolet differences between sulfur butterflies Colias eurythreme and C. phliodice, and a possible isolating mechanism. Nature 241:406–408CrossRefGoogle Scholar
  42. Silberglied RE, Taylor OR (1978) Ultraviolet reflection and its behavioral role in the courtship of the sulphur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae). Behav Ecol Sociobiol 3:203–243CrossRefGoogle Scholar
  43. StatSoft (2005)STATISTICA (data analysis software system) version 71.
  44. Taylor OR (1973) Reproductive isolation in Colias eurytheme and C. philodice (Lepidoptera: Pieridae): use of olfaction in mate selection. Ann Entomol Soc Am 66:621–626Google Scholar
  45. Tolman T, Lewington R (1997) Collins field guide butterflies Britain and Europe. Harper Collins, LondonGoogle Scholar
  46. Vane-Wright RI, Boppre M (1993) Visual and chemical signalling in butterflies: functional and phylogenetic perspectives. Philos Trans R Soc Lond, B 340:197–205CrossRefGoogle Scholar
  47. Wasserman M, Koepfer HR (1977) Character displacement for sexual isolation between Drosophila mojavensis and Drosophila arizonensis. Evolution 31:812–823CrossRefGoogle Scholar
  48. Wiklund C (1977) Courtship behaviour in relation to female monogamy in Leptidea sinapis (Lepidoptera). Oikos 29:275–283CrossRefGoogle Scholar
  49. Wiklund C, Forsberg J (1986) Courtship and male discrimination between virgin and mated females in the orange tip butterfly Anthocharis cardamines. Anim Behav 34:328–332CrossRefGoogle Scholar
  50. Wiklund C, Lindfors V, Forsberg J (1996) Early male emergence and reproductive phenology of the adult overwintering butterfly Gonepteryx rhamni in Sweden. Oikos 75:227–240CrossRefGoogle Scholar
  51. Vila R, Viader S, Jubany J (2003) Leptidea sinapis (Linnaeus, 1758) i L. reali (Reissinger 1988): dues ecpécies “bessones” a Catalunya i Andorra (Lepidoptera: Pieridae). Buttl Soc Cat Lepid 90:25–47Google Scholar
  52. Wyatt TD (2003) Pheromones and animal behaviour. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Magne Friberg
    • 1
    Email author
  • Namphung Vongvanich
    • 2
  • Anna-Karin Borg-Karlson
    • 2
  • Darrell J Kemp
    • 3
  • Sami Merilaita
    • 1
  • Christer Wiklund
    • 1
  1. 1.Department of ZoologyStockholm UniversityStockholmSweden
  2. 2.Department of ChemistryRoyal Institute of TechnologyStockholmSweden
  3. 3.School of Tropical BiologyJames Cook UniversityCairnsAustralia

Personalised recommendations