Behavioral Ecology and Sociobiology

, Volume 62, Issue 5, pp 647–657 | Cite as

Queen–worker–brood coadaptation rather than conflict may drive colony resource allocation in the ant Temnothorax curvispinosus

Original Paper

Abstract

Conflicts of interest among genetically heterogeneous nestmates in social insect colonies have been emphasized as driving colony resource allocation. However, potential intracolonial conflicts may not actually be realized so that resource allocation could be shaped primarily by among-colony selection that maximizes colony productivity. To elucidate the causal basis of patterns of resource allocation, I experimentally manipulated three fundamental aspects of colony social structure (relatedness among workers, relatedness among larvae, and queen presence) in the ant Temnothorax curvispinosus and measured effects on colony resource allocation to new workers, gynes, and males. The experimental manipulations had widespread effects on patterns of colony resource allocation, but there was little evidence for realized conflicts over the sex ratio and caste ratio. Decreasing nestmate relatedness caused decreased colony productivity, suggesting that more closely related nestmates have more favorably interacting phenotypes. Together, these results suggest that resource allocation in T. curvispinosus may be shaped more by among-colony selection than intracolonial conflict, leading to queen–worker–brood coadaptation.

Keywords

Caste ratio Intracolonial conflict Levels of selection Social evolution Sex ratio 

References

  1. Agrawal AF, Brodie ED III, Brown J (2001) Parent-offspring coadaptation and the dual genetic control of maternal care. Science 292:1710–1712PubMedCrossRefGoogle Scholar
  2. Alloway TM, Buschinger A, Talbot M, Stuart RJ, Thomas C (1982) Polygyny and polydomy in three North American species of the ant genus Leptothorax Mayr (Hymenoptera: Formicidae). Psyche 89:249–274CrossRefGoogle Scholar
  3. Backus VL (1995) Rules for allocation in a temperate forest ant: demography, natural-selection, and queen–worker conflict. Am Nat 145:775–796CrossRefGoogle Scholar
  4. Backus VL, Herbers JM (1992) Sexual allocation ratios in forest ants: food limitation does not explain observed patterns. Behav Ecol Sociobiol 30:425–429CrossRefGoogle Scholar
  5. Beekman M, Ratnieks FLW (2003) Power over reproduction in social Hymenoptera. Philos T Roy Soc B 358:1741–1753CrossRefGoogle Scholar
  6. Bono JM, Herbers JM (2003) Proximate and ultimate control of sex ratios in Myrmica brevispinosa colonies. Proc Roy Soc Lond B Bio 270:811–817CrossRefGoogle Scholar
  7. Boomsma JJ, Grafen A (1990) Intraspecific variation in ant sex ratios and the Trivers–Hare hypothesis. Evolution 44:1026–1034CrossRefGoogle Scholar
  8. Boomsma JJ, Grafen A (1991) Colony-level sex ratio selection in the eusocial Hymenoptera. J Evol Biol 4:383–407CrossRefGoogle Scholar
  9. Boomsma JJ, Nachman G (2002) Analysis of sex ratios in social insects. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge Univ. Press, Cambridge, UK, pp 93–111Google Scholar
  10. Boomsma JJ, Nielsen J, Sundström L, Oldham NJ, Tentschert J, Petersen HC, Morgan ED (2003) Informational constraints on optimal sex allocation in ants. Proc Natl Acad Sci U S A 100:8799–8804PubMedCrossRefGoogle Scholar
  11. Bourke AFG, Chan GL (1999) Queen–worker conflict over sexual production and colony maintenance in perennial social insects. Am Nat 154:417–426PubMedCrossRefGoogle Scholar
  12. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton Univ. Press, Princeton, New JerseyGoogle Scholar
  13. Bourke AFG, Ratnieks FLW (1999) Kin conflict over caste determination in social Hymenoptera. Behav Ecol Sociobiol 46:287–297CrossRefGoogle Scholar
  14. Buschinger A (1973) The role of daily temperature rhythms in brood development of ants of the tribe Leptothoracini (Hymenoptera; Formicidae). In: Weiser W (ed) Effects of temperature on ectothermic organisms. Springer, Berlin, Germany, pp 229–232Google Scholar
  15. Chapuisat M, Keller L (1999) Testing kin selection with sex allocation data in eusocial Hymenoptera. Heredity 82:473–478CrossRefGoogle Scholar
  16. Cremer S, Heinze J (2002) Adaptive production of fighter males: queens of the ant Cardiocondyla adjust the sex ratio under local mate competition. Proc Roy Soc Lond B Bio 269:417–422CrossRefGoogle Scholar
  17. Dani FR, Foster KR, Zacchi F, Seppä P, Massolo A, Carelli A, Arevalo E, Queller DC, Strassmann JE, Turillazzi S (2004) Can cuticular lipids provide sufficient information for within-colony nepotism in wasps? Proc Roy Soc Lond B Bio 271:745–753CrossRefGoogle Scholar
  18. Deslippe RJ, Savolainen R (1995) Sex investment in a social insect: the proximate role of food. Ecology 76:375–382CrossRefGoogle Scholar
  19. Dietemann V, Peeters C, Hölldobler B (2005) Role of the queen in regulating reproduction in the bulldog ant Myrmecia gulosa: control or signalling? Anim Behav 69:777–784CrossRefGoogle Scholar
  20. Evans JD (1995) Relatedness threshold for the production of female sexuals in colonies of a polygynous ant, Myrmica tahoensis, as revealed by microsatellite DNA analysis. Proc Natl Acad Sci U S A 92:6514–6517PubMedCrossRefGoogle Scholar
  21. Foitzik S, Haberl M, Gadau J, Heinze J (1997) Mating frequency of Leptothorax nylanderi ant queens determined by microsatellite analysis. Insectes Soc 44:219–227CrossRefGoogle Scholar
  22. Foitzik S, Strätz M, Heinze J (2003) Ecology, life history and resource allocation in the ant, Leptothorax nylanderi. J Evol Biol 16:670–680PubMedCrossRefGoogle Scholar
  23. Franks NR, Ireland B, Bourke AFG (1990) Conflicts, social economics and life history strategies in ants. Behav Ecol Sociobiol 27:175–181CrossRefGoogle Scholar
  24. Hamilton WD (1964a) The genetical evolution of social behaviour, I. J Theor Biol 7:1–16PubMedCrossRefGoogle Scholar
  25. Hamilton WD (1964b) The genetical evolution of social behaviour, II. J Theor Biol 7:17–52PubMedCrossRefGoogle Scholar
  26. Hammond RL, Bruford MW, Bourke AFG (2002) Ant workers selfishly bias sex ratios by manipulating female development. Proc Roy Soc Lond B Bio 269:173–178CrossRefGoogle Scholar
  27. Hannonen M, Sundström L (2003) Worker nepotism among polygynous ants. Nature 421:910PubMedCrossRefGoogle Scholar
  28. Heinze J (2004) Reproductive conflict in insect societies. Adv Stud Behav 34:1–57CrossRefGoogle Scholar
  29. Helms KR, Fewell JH, Rissing SW (2000) Sex ratio determination by queens and workers in the ant Pheidole desertorum. Anim Behav 59:523–527PubMedCrossRefGoogle Scholar
  30. Herbers JM (1984) Queen worker conflict and eusocial evolution in a polygynous ant species. Evolution 38:631–643CrossRefGoogle Scholar
  31. Herbers JM (1990) Reproductive investment and allocation ratios for the ant Leptothorax longispinosus: sorting out the variation. Am Nat 136:178–208CrossRefGoogle Scholar
  32. Herbers JM, Grieco S (1994) Population structure of Leptothorax ambiguus, a facultatively polygynous and polydomous ant species. J Evol Biol 7:581–598CrossRefGoogle Scholar
  33. Herbers JM, Stuart RJ (1996a) Multiple queens in ant nests: impact on genetic structure and inclusive fitness. Am Nat 147:161–187CrossRefGoogle Scholar
  34. Herbers JM, Stuart RJ (1996b) Patterns of reproduction in southern versus northern populations of Leptothorax ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 89:354–360Google Scholar
  35. Holzer B, Kümmerli R, Keller L, Chapuisat M (2006) Sham nepotism as a result of intrinsic differences in brood viability in ants. Proc R Soc Lond B 273:2049–2052CrossRefGoogle Scholar
  36. Iwanishi S, Ohkawara K (2005) The mechanism of the queen signal in regulation of worker reproduction in the myrmicine ant Aphaenogaster smythiesi japonica. Ethol Ecol Evol 17:27–39CrossRefGoogle Scholar
  37. Kaptein N, Billen J, Gobin B (2005) Larval begging for food enhances reproductive options in the ponerine ant Gnamptogenys striatula. Anim Behav 69:293–299CrossRefGoogle Scholar
  38. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal. Anim Behav 45:787–794CrossRefGoogle Scholar
  39. Korb J, Heinze J (2004) Multilevel selection and social evolution of insect societies. Naturwissenschaften 91:291–304PubMedCrossRefGoogle Scholar
  40. Kümmerli R, Helms KR, Keller L (2005) Experimental manipulation of queen number affects colony sex ratio investment in the highly polygnous ant Formica exsecta. Proc Roy Soc Lond B Bio 272:1789–1794CrossRefGoogle Scholar
  41. Linksvayer TA (2006) Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution 60:2552–2561PubMedGoogle Scholar
  42. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  43. Mackay WP (2000) A review of the New World ants of the subgenus Myrafant, (Genus Leptothorax) (Hymenoptera : Formicidae). Sociobiology 36:265–434Google Scholar
  44. Mueller UG (1991) Haplodiploidy and the evolution of facultative sex ratios in a primitively eusocial bee. Science 254:442–444PubMedCrossRefGoogle Scholar
  45. Nonacs P, Carlin NF (1990) When can ants discriminate the sex of brood: a new aspect of queen worker conflict. Proc Natl Acad Sci U S A 87:9670–9673PubMedCrossRefGoogle Scholar
  46. Passera L, Aron S, Vargo EL, Keller L (2001) Queen control of sex ratio in fire ants. Science 293:1308–1310PubMedCrossRefGoogle Scholar
  47. Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Ann Rev Entomol 51:581–608CrossRefGoogle Scholar
  48. Ratnieks FLW, Helanterä H, KR Foster (2007) Are mistakes inevitable? Sex allocation specialization by workers can reduce the genetic information needed to assess queen mating frequency. J Theor Biol 244:470–477PubMedCrossRefGoogle Scholar
  49. Ratnieks FLW, Reeve HK (1992) Conflict in single queen hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. J Theor Biol 158:33–65CrossRefGoogle Scholar
  50. Reuter M, Helms KR, Lehmann L, Keller L (2004) Effects of brood manipulation costs on optimal sex allocation in social Hymenoptera. Am Nat 164:E73–E82PubMedCrossRefGoogle Scholar
  51. Ross KG, Keller L (2002) Experimental conversion of colony social organization by manipulation of worker genotype composition in fire ants (Solenopsis invicta). Behav Ecol Sociobiol 51:287–295CrossRefGoogle Scholar
  52. Sanada S, Satoh T, Obara Y (1998) How average relatedness affects the frequency of trophallaxis between workers in an experimental colony of the polygynous ant, Camponotus yamaokai. J Ethol 16:43–48CrossRefGoogle Scholar
  53. Sorenson D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, New York, NYGoogle Scholar
  54. Stuart RJ (1987) Transient nest mate recognition cues contribute to a multicolonial population structure in the ant Leptothorax curvispinosus. Behav Ecol Sociobiol 21:229–235CrossRefGoogle Scholar
  55. Stuart RJ, Gresham-Bissett L, Alloway TM (1993) Queen adoption in the polygynous and polydomous ant, Leptothorax curvispinosus. Behav Ecol 4:276–281CrossRefGoogle Scholar
  56. Sundström L, Chapuisat M, Keller L (1996) Conditional manipulation of sex ratios by ant workers: A test of kin selection theory. Science 274:993–995PubMedCrossRefGoogle Scholar
  57. Trampus FI (2001) The effect of unrelated workers on colony performance in a brood raiding leptothoracine ant. Am Zool 41:1609–1609Google Scholar
  58. Trivers RL, Hare H (1976) Haplodiploidy and the evolution of social insects. Science 191:249–263PubMedCrossRefGoogle Scholar
  59. Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol Monogr 63:425–457CrossRefGoogle Scholar
  60. Wenseleers T, Ratnieks FLW, Billen J (2003) Caste fate conflict in swarm-founding social Hymenoptera: an inclusive fitness analysis. J Evol Biol 16:647–658PubMedCrossRefGoogle Scholar
  61. Wesson LG (1940) An experimental study on caste determination in ants. Psyche 47:105–111Google Scholar
  62. Wheeler WM (1911) The ant colony as an organism. J Morphol 22:307–325CrossRefGoogle Scholar
  63. Wilson EO (1971) The insect societies. Harvard Univ. Press, Cambridge (MA)Google Scholar
  64. Wilson K, Hardy ICW (2002) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge Un. Press, Cambridge, UK, pp 48–92Google Scholar
  65. Wolf JB, Brodie ED III (1998) The coadaptation of parental and offspring characters. Evolution 52:299–308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA
  2. 2.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations