Behavioral Ecology and Sociobiology

, Volume 62, Issue 1, pp 29–35 | Cite as

Daring females, devoted males, and reversed sexual size dimorphism in the sand-dwelling spider Allocosa brasiliensis (Araneae, Lycosidae)

  • Anita Aisenberg
  • Carmen Viera
  • Fernando G. Costa
Original Paper

Abstract

Sexual selection theory predicts that a higher investment in offspring will turn females into the selective sex, while males will compete for accessing and courting them. However, there are exceptions to the rule. When males present a high reproductive investment, sex roles can reverse from typical patterns, turning males into the choosy sex, while females locate males and initiate courtship. In many spiders, males are smaller than females, wandering in search of sedentary females and maximizing the number of copulations. In the present study, we present findings on the sand-dwelling wolf spider, Allocosa brasiliensis, evidencing a reversal in typical courtship roles reported for the first time in spiders. Males were bigger than females. Females located males and initiated courtship. Copulation always occurred in male burrows and took place mainly in long burrows. Males donated their burrows to the females after copulation, closing the entrance before leaving with female cooperation from inside. Males would provide females with a secure place for ovipositing, being exposed to predation and diminishing their future mating possibilities until constructing a new burrow. The cost of vacating the burrow and losing the refuge in an unpredictable habitat, such as sand dunes, would explain the courtship roles reversal in this spider species. Results turn A. brasiliensis as a promising model for discussing the determinants of sex roles and the pressures that drive their evolution and maintenance.

Keywords

Wolf spider Sex roles Sexual size dimorphism reversal 

Notes

Acknowledgments

Martín Graña, Alfredo Peretti, Fernando Pérez-Miles, and Sergio Martínez for their useful comments on a previous version of the manuscript. We are grateful to Darryl Gwynne, Yael Lubin, Matthias Foellmer, and an anonymous reviewer for their suggestions that substantially improved the manuscript. Rodrigo Postiglioni helped converting the videos to digital format. The study was supported by a grant awarded to AA from PEDECIBA, Facultad de Ciencias, Universidad de la República, Uruguay. Experiments comply with current Uruguayan and institutional laws.

Supplementary material

Video S1

Male closing the burrow entrance and guarding after the copulation, while the female liberates silk and collaborates in closing the entrance from inside the burrow (WMV 1.1 MB)

References

  1. Andersson M (1994) Sexual selection. Princeton University Press Princeton, NJGoogle Scholar
  2. Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton, NJGoogle Scholar
  3. Arnqvist G, Jones TM, Elgar MA (2003) Insect behaviour: reversal of sex roles in nuptial feeding. Nature 424:387PubMedCrossRefGoogle Scholar
  4. Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol Rev 76:305–339PubMedCrossRefGoogle Scholar
  5. Byrne PG, Rice WR (2006) Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster. Proc R Soc Lond B Biol Sci 273:917–922CrossRefGoogle Scholar
  6. Capocasale RM, Costa FG (1975) Descripción de los biotopos y caracterización de los habitats de Lycosa malitiosa Tullgren (Araneae: Lycosidae) en Uruguay. Vie Milieu Sér C Biol Terr 25(1):1–15Google Scholar
  7. Christy JH, Baum JK, Backwell PRY (2003) Attractiveness of sand hoods built by courting male fiddler crabs, Uca musica: test of a sensory trap hypothesis. Anim Behav 66:89–94CrossRefGoogle Scholar
  8. Coddington JA, Hormiga G, Scharff N (1997) Giant females or dwarf males? Nature 385:687–688CrossRefGoogle Scholar
  9. Costa FG (1995) Ecología y actividad diaria de las arañas de la arena Allocosa spp. (Araneae, Lycosidae) en Marindia, localidad costera del sur del Uruguay. Rev Brasil Biol 55(3):457–466Google Scholar
  10. Costa FG, Simó M, Aisenberg A (2006) Faunística y ecología de la fauna costera de Marindia (Canelones, Uruguay) con especial énfasis en las arañas: un estudio de dos años con trampas de intercepción. In: Menafra R, Rodríguez-Gallego L, Scarabino F, Conde D (eds) Bases para la conservación y el manejo de la costa uruguaya, Vida Silvestre, Montevideo, pp 427–436Google Scholar
  11. Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton, NJGoogle Scholar
  12. Eberhard WG, Huber BA, Rodríguez SRL, Briceño RD, Salas I et al (1998) One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52(2):415–431CrossRefGoogle Scholar
  13. Foellmer MW, Fairbairn DJ (2005) Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider. Oecologia 142:653–662PubMedCrossRefGoogle Scholar
  14. Gwynne DT (1991) Sexual competition among females: what causes courtship-role reversal? Trends Ecol Evol 6(4):118–121CrossRefGoogle Scholar
  15. Gwynne DT, Bussière LF (2002) Female mating swarms increase predation risk in a ‘role reversed’ dance fly (Diptera: Empididae: Rhamphomyia longicauda Loew). Behaviour 139:1425–1430CrossRefGoogle Scholar
  16. Hammer O, Harper DAT, Ryan PD (2003) Past palaeontological, version 1.18. http://folk.uio.no/ohammer/past
  17. Henschel JR (2002) Long-distance wandering and mating by the dancing white lady spider (Leucorchestris arenicola) (Araneae, Sparassidae) across Namib dunes. J Archnol 30:321–330CrossRefGoogle Scholar
  18. Henschel JR, Lubin YD (1992) Environmental factors affecting the web and activity of a psammophilous spider in the Namib Desert. J Arid Environ 22:173–189Google Scholar
  19. Hormiga G, Scharff N, Coddington JA (2000) The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Syst Biol 49(3):435–462PubMedCrossRefGoogle Scholar
  20. Hunt J, Simmons LW (2002) Confidence of paternity and paternal care: covariation revealed through the experimental manipulation of the mating system in the beetle Onthophagus taurus. J Evol Biol 15:784–795CrossRefGoogle Scholar
  21. Karlsson B, Leimar O, Wiklund C (1997) Unpredictable environments, nuptial gifts and the evolution of size dimorphism in insects: an experiment. Proc R Soc Lond B Biol Sci 264:475–479CrossRefGoogle Scholar
  22. Kokko H (1998) Should advertising parental care be honest? Proc R Soc Lond B Biol Sci 265:1871–1878CrossRefGoogle Scholar
  23. Lang GH (2001) Sexual size dimorphism and juvenile growth rate in Linyphia triangularis (Linyphiidae, Araneae). J Archnol 29:64–71CrossRefGoogle Scholar
  24. Le Bas NR, Hockham LR (2005) An invasion of cheats: the evolution of worthless nuptial gifts. Curr Biol 15:64–67CrossRefGoogle Scholar
  25. Lorch P (2002) Understanding reversals in the relative strength of sexual selection on males and females: a role for sperm competition? Am Nat 6:645–657CrossRefGoogle Scholar
  26. Mora G (1990) Paternal care in a neotropical harvestman, Zygopachylus albomarginis (Arachnida, Opiliones:Gonyleptidae). Anim Behav 39:582–593CrossRefGoogle Scholar
  27. Moya-Laraño J, Cabeza M (2003) Bimodality in the body size distribution of Mediterranean tarantula juveniles: Humphreys’ Russian roulette revisited. Revista Ibérica de Aracnología 7:211–219Google Scholar
  28. Moya-Laraño J, Halaj J, Wise DH (2002) Climbing to reach females: Romeo should be small. Evolution 56(2):420–425PubMedGoogle Scholar
  29. Prenter J, Montgomery WI, Elwood RW (1995) Multivariate morphometrics and sexual dimorphism in the orb-web spider Metellina segmentata (Clerck, 1757) (Araneae, Metidae). Biol J Linn Soc 55:345–354CrossRefGoogle Scholar
  30. Prenter J, Elwood RW, Montgomery WI (1999) Sexual size dimorphism and reproductive investment by female spiders: a comparative analysis. Evolution 53:1987–1994CrossRefGoogle Scholar
  31. Queller DC (1997) Why do females care more than males? Proc R Soc Lond B Biol Sci 264:1555–1557CrossRefGoogle Scholar
  32. Roughgarden J, Oishi M, Akcay E (2006) Reproductive social behavior: cooperative games to replace sexual selection. Science 311:965–969PubMedCrossRefGoogle Scholar
  33. Schulz S (2004) Semiochemistry of spiders. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology, vol 1. Cambridge University Press, Cambridge, pp 110–150Google Scholar
  34. Schutz D, Taborsky M (2005) Mate choice and sexual conflict in the size dimorphic water spider Argyroneta aquatica (Araneae, Argyronetidae). J Archnol 33:767–775CrossRefGoogle Scholar
  35. Stratton GE, Hebets EA, Miller PR, Miller GL (1996) Pattern and duration of copulation in wolf spiders (Araneae, Lycosidae). J Archnol 24:186–200Google Scholar
  36. Tallamy DW (2000) Sexual selection and the evolution of exclusive paternal care in arthropods. Anim Behav 60:559–567PubMedCrossRefGoogle Scholar
  37. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man 1871–1971. Aldine, Chicago, pp 136–179Google Scholar
  38. Vahed K (1998) The function of nuptial feeding in insects: a review of empirical studies. Biol Rev 73:43–78CrossRefGoogle Scholar
  39. Vollrath F, Parker GA (1992) Sexual dimorphism and distorted sex ratios in spiders. Nature 360:156–159CrossRefGoogle Scholar
  40. Wager JD (1995) Egg sac inhibits filial cannibalism in the wolf spider Schizocosa ocreata. Anim Behav 50:555–557CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Anita Aisenberg
    • 1
  • Carmen Viera
    • 2
  • Fernando G. Costa
    • 1
  1. 1.Laboratorio de Etología, Ecología y EvoluciónInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Sección EntomologíaFacultad de CienciasMontevideoUruguay

Personalised recommendations