Behavioral Ecology and Sociobiology

, Volume 61, Issue 10, pp 1531–1541 | Cite as

Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size

  • Raphaël Boulay
  • Abraham Hefetz
  • Xim Cerdá
  • Séverine Devers
  • Wittko Francke
  • Robert Twele
  • Alain Lenoir
Original Paper


Models based on the kin selection theory predict that in social hymenopterans, queens may favor a lower investment in the production of sexuals than workers. However, in perennial colonies, this conflict may be tuned down by colony-level selection because of the trade off between colony survival and reproductive allocation. In this study, we present a survey of sexual production in colonies of Aphaenogaster senilis, a common species of ant in the Iberian Peninsula. Similar to most species that reproduce by fission, males were found in large excess compared to gynes (172:1). Sexuals were more likely to be found in queenless than in queenright (QR) field colonies. However, we also found a few gynes and numerous males in very large QR colonies. We compared these data with those available in the literature for A. rudis, a congeneric species from North America that has independent colony founding. The sex ratio in this species was only five males for each female, and sexuals were mostly found in QR nests, irrespective of colony size. We confirmed queen inhibition of sexual production in A. senilis in laboratory experiments and provide evidence that this inhibition is mediated by a nonvolatile pheromone. To seek the potential source of such a queen pheromone, we analyzed the secretions of two conspicuous exocrine glands, the Dufour’s and postpharyngeal glands (DG and PPG, respectively) in both queens and workers. Both secretions were composed of hydrocarbons, but that of DG also contained small quantities of tetradecanal and hexadecanal. The hydrocarbon profile of the DG and PPG showed notable caste specificity suggesting a role in caste-related behavior. The PPG secretions also differed between colonies suggesting its role in colony-level recognition. We suggest that in A. senilis, there are two modes of colony fission: First, in very large colonies, gynes are produced, probably because of the dilution of the queen pheromone, and consequently one or more gynes leave the mother colony with workers and brood to found a new nest. This is beneficial at the colony level because it avoids the production of costly sexuals in small colonies. However, because the queen and workers have different optima for sexual production, we hypothesize that queens tend to overproduce the pheromone to delay their production. This in turn may drive workers to leave the mother colony during nest relocation and to produce sexuals once they are away from the queen’s influence, creating a second mode of colony fission.


Sexual production Queen pheromones Colony fission Reproductive conflict 


  1. Alaux C, Jaisson P, Hefetz A (2005) Reproductive decision in semelparous social insects: a pace-maker queen in bumblebees colonies. Behav Ecol Sociobiol 59:270–277CrossRefGoogle Scholar
  2. Alaux C, Jaisson P, Hefetz A (2006) Regulation of worker reproduction in bumblebees: workers eavesdrop on a queen signal. Behav Ecol Sociobiol 60:439–446CrossRefGoogle Scholar
  3. Aron S, Keller L, Passera L (2001) Role of resource availability on sex, caste and reproductive allocation ratios in the Argentine ant Linepithema humile. J Anim Ecol 70:831–839CrossRefGoogle Scholar
  4. Backus VL (1995) Rules for allocation in a temperate forest ant—demography, natural selection, and queen–worker conflict. Am Nat 145:775–796CrossRefGoogle Scholar
  5. Bourke AFG, Chan GL (1999) Queen–worker conflict over sexual production and colony maintenance in perennial social insects. Am Nat 154:417–426PubMedCrossRefGoogle Scholar
  6. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton Univ. Press, Princeton, NJGoogle Scholar
  7. Bourke AFG, Ratnieks FLW (1999) Kin conflict over caste determination in social Hymenoptera. Behav Ecol Sociobiol 46:287–297CrossRefGoogle Scholar
  8. Brian MV (1973) Caste control through worker attack in the ant Myrmica. Insectes Soc 20:87–102CrossRefGoogle Scholar
  9. Brian MV (1979) Habitat differences in sexual production by two co-existent ants Tetramorium caespitum, Lasius alienus, in southern England. J Anim Ecol 48:943–953CrossRefGoogle Scholar
  10. Bulmer MG (1983) Sex ratio theory in social insects with swarming. J Theor Biol 100:329–340CrossRefGoogle Scholar
  11. Butler CG (1959) The source of the substance produced by a queen honeybee (Apis mellifera) which inhibits development of the ovaries of the workers of its colony. Proc R Entomol Soc Lond 34:137–138Google Scholar
  12. Butler L (1961) The scent of queen honey bees (Apis mellifera) that causes partial inhibition of queen rearing. J Insect Physiol 7:258–264CrossRefGoogle Scholar
  13. Cerdá X, Dahbi A, Retana J (2002) Spatial patterns, temporal variability, and the role of multi-nest colonies in a monogynous Spanish desert ant. Ecol Entomol 27:7–15CrossRefGoogle Scholar
  14. Craig R (1980) Sex investment ratios in social Hymenoptera. Am Nat 116:311–323CrossRefGoogle Scholar
  15. Cuvillier-Hot V, Cobb M, Malosse C, Peeters C (2001) Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J Insect Physiol 47:485–493PubMedCrossRefGoogle Scholar
  16. Cuvillier-Hot V, Lenoir A, Crewe R, Malosse C, Peeters C (2004) Fertility signaling and reproductive skew in queenless ants. Anim Behav 68:1209–1219CrossRefGoogle Scholar
  17. de Menten L, Fournier D, Brent C, Passera L, Vargo EL, Aron S (2005) Dual mechanism of queen influence over sex ratio in the ant Pheidole pallidula. Behav Ecol Sociobiol 58:527–533CrossRefGoogle Scholar
  18. Dietemann V, Peeters C, Liebig J, Thivet V, Hölldobler B (2003) Cuticular hydrocarbons mediate discrimination of reproductives and non reproductives in the ant Myrmecia gulosa. Proc Natl Acad Sci USA 100:10341–10346PubMedCrossRefGoogle Scholar
  19. Dor R, Katzav-Gozansky T, Hefetz A (2005) Dufour’s gland pheromone as a reliable fertility signal among honeybee (Apis mellifera) workers. Behav Ecol Sociobiol 58:270–276CrossRefGoogle Scholar
  20. Elmes GW, Wardlaw JC (1982) A population study of the ants Myrmica sabuleti and Myrmica scabrinodis living at two sites in the south of England. II. Effect of above-nest vegetation. J Anim Ecol 51:665–680CrossRefGoogle Scholar
  21. Endler A, Liebig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950PubMedCrossRefGoogle Scholar
  22. Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell Univ. Press, Ithaca, NYGoogle Scholar
  23. Hammond RL, Keller L (2004) Conflict over male parentage in social insects. PLoS Biol 2:1472–1482CrossRefGoogle Scholar
  24. Headley AE (1949) A population study of the ant Aphaenogaster fulva ssp. aquia Buckley (Hymenoptera, Formicidae). Ann Entomol Soc Am, 42:265–272Google Scholar
  25. Heinze J, Stengl B, Sledge MF (2002) Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa. Behav Ecol Sociobiol 52:59–65CrossRefGoogle Scholar
  26. Herbers JM, Banschbach VS (1998) Food supply and reproductive allocation in forest ants: repeated experiments give different results. Oikos 83:145–151CrossRefGoogle Scholar
  27. Herbers JM, Banschbach VS (1999) Plasticity of social organization in a forest ant species. Behav Ecol Sociobiol 45:451–465CrossRefGoogle Scholar
  28. Herbers JM, DeHeer CJ, Foitzik S (2001) Conflict over sex allocation drives conflict over reproduction in perennial social insects. Am Nat 158:178–192CrossRefPubMedGoogle Scholar
  29. Hölldobler B, Carlin NF (1989) Colony founding, queen control and worker reproduction in the ant Aphaenogaster (=Novomessor) cockerelli (Hymenoptera: Formicidae). Psyche 96:131–151CrossRefGoogle Scholar
  30. Hoover SER, Keeling CI, Winston ML, Slessor KN (2003) The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90:477–480PubMedCrossRefGoogle Scholar
  31. Iwanishi S, Ohkawara K (2005) The mechanism of the queen signal in regulation of worker reproduction in the myrmicine ant Aphaenogaster smythiesi japonica. Ethol Ecol Evol 17:27–39CrossRefGoogle Scholar
  32. Iwanishi S, Hasegawa E, Ohkawara K (2003) Worker oviposition and policing behaviour in the myrmicine ant Aphaenogaster smythiesi japonica Forel. Anim Behav 66:513–519CrossRefGoogle Scholar
  33. Julian GE, Fewell JH, Gadau J, Johnson RA, Larrabee D (2002) Genetic determination of the queen caste in an ant hybrid zone. Proc Natl Acad Sci USA 99:8157–8160PubMedCrossRefGoogle Scholar
  34. Katzav-Gozansky T, Boulay R, Soroker V, Hefetz A (2004) Queen-signal modulation of worker pheromonal composition in honeybees. Proc R Soc Lond B 271:2065–2069CrossRefGoogle Scholar
  35. Katzav-Gozansky T, Boulay R, Soroker V, Hefetz A (2006) Queen pheromones affecting the production of queen-like secretion in workers. J Comp Physiol A 192:737–742CrossRefGoogle Scholar
  36. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45:787–794CrossRefGoogle Scholar
  37. Lahav S, Soroker V, Hefetz A, Vander Meer RK (1999) Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249CrossRefGoogle Scholar
  38. Ledoux A (1971) Un nouveau mode de bouturage de société chez la fourmi Aphaenogaster senilis Mayr. C R Acad Sci Ser D Sci Nat 273:83–85Google Scholar
  39. Ledoux A (1976a) Bouturage expérimental de colonie chez la fourmi Aphaenogaster senilis Mayr. C R Acad Sci Ser D Sci Nat 283:1061–1063Google Scholar
  40. Ledoux A (1976b) Inhibition exercée sur l’apparition de nouvelles femelles ailées, par le femelle reine pondeuse chez Aphaenogaster senilis (Hyméoptère Formicoidea). C R Acad Sci Ser D Sci Nat 283:1197–200Google Scholar
  41. Ledoux A (1984) Sur la présence d’ouvrières à parthénogenèse thélytoque observée chez Aphaenogaster senilis (Mayr.) (Hyménoptère Formicoidea). C R Acad Sci Ser III Sci Vie 299:859–861Google Scholar
  42. Lenoir A, Fresneau D, Errard C, Hefetz A (1999) Individuality and colonial identity in ants. In: Detrain C, Deneubourg JL, Pasteels J (eds) Information processing in social insects. Birkhauser, Basel, pp 219–237Google Scholar
  43. Lenoir A, Hefetz A, Simon T, Soroker V (2001) Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera: Formicidae). Physiol Entomol 26:275–283CrossRefGoogle Scholar
  44. Liebig J, Peeters C, Oldham NJ, Markstadter C, Hölldobler B (2000) Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc Natl Acad Sci USA 97:4124–4131PubMedCrossRefGoogle Scholar
  45. Lim SP, Lee CY (2005) Effects of queen body parts on the production of new sexuals in the Pharaoh’s ant, Monomorium pharaonis (Hymenoptera: Formicidae). Sociobiology 46:677–688Google Scholar
  46. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute, CaryGoogle Scholar
  47. Mehdiabadi N, Reeve HK, Mueller UG (2003) Queens versus workers: sex-ratio conflicts in eusocial insects. Trends Ecol Evol 18:88–93CrossRefGoogle Scholar
  48. Monnin T, Ratnieks FL, Jones GR, Beard R (2002) Pretender punishment induced by chemical signaling in a queenless ant. Nature 419:61–65PubMedCrossRefGoogle Scholar
  49. Oster G, Wilson EO (1978) Caste and ecology in the social insects. Princeton Univ. Press, Princeton, NJGoogle Scholar
  50. Pamilo P (1991) Evolution of colony characteristics in social insects. I. Sex allocation. Am Nat 137:83–107CrossRefGoogle Scholar
  51. Pearcy M, Aron S (2006) Local resource competition and sex ratio in the ant Cataglyphis cursor. Behav Ecol:569–574Google Scholar
  52. Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B 266:1323–1327CrossRefGoogle Scholar
  53. Pettis JS, Winston ML, Collins AM (1995) Suppression of queen rearing in European and Africanized honey bees Apis mellifera L. by synthetic queen mandibular pheromone. Insectes Soc 42:113–121CrossRefGoogle Scholar
  54. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge Univ. Press, CambridgeGoogle Scholar
  55. Ratnieks FLW (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132:217–236CrossRefGoogle Scholar
  56. Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard Univ. Press, LondonGoogle Scholar
  57. Sundström L (1995) Sex allocation and colony maintenance in monogyne and polygyne colonies of Formica truncorum (Hymenoptera: Formicidae): the impact of kinship and mating structure. Am Nat 146:182–201CrossRefGoogle Scholar
  58. Talbot M (1951) Populations and hibernating conditions of the ant Aphaenogaster (Attomyrma) rudis Emery (Hymenoptera: Formicidae). Ann Entomol Soc Am 44:302–307Google Scholar
  59. Thomas ML, Parry LJ, Allan RA, Elgar MA (1999) Geographic affinity, cuticular hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex purpureus. Naturwissenschaften 86:87–92CrossRefGoogle Scholar
  60. Vander Meer RK, Glancey BM, Lofgren CS, Glover A, Tumlinson JH, Rocca J (1980) The poison sac of red imported fire ant queens: source of a pheromone attractant. Ann Entomol Soc Am 73:609–612Google Scholar
  61. Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer RK, Breed M, Winston M, Espelie KE (eds) Pheromone communication in social insects. Westview, Boulder, CO, pp 79–103Google Scholar
  62. Vargo EL (1988) A bioassay for a primer pheromone of queen fire ants (Solenopsis invicta) which inhibits the production of sexuals. Insectes Soc 35:382–392CrossRefGoogle Scholar
  63. Vargo EL (1997) Poison gland of queen fire ants (Solenopsis invicta) is the source of a primer pheromone. Naturwissenschaften 84:507–510CrossRefGoogle Scholar
  64. Vargo EL, Hulsey CD (2000) Multiple glandular origins of queen pheromones in the fire ant Solenopsis invicta. J Insect Physiol 46:1151–1159PubMedCrossRefGoogle Scholar
  65. Vargo EL, Passera L (1991) Pheromonal and behavioral queen control over the production of gynes in the Argentine ant Iridomyrmex humilis (Mayr). Behav Ecol Sociobiol 28:161–169CrossRefGoogle Scholar
  66. Vargo EL, Passera L (1992) Gyne development in the Argentine ant Iridomyrmex humilis role of overwintering and queen control. Physiol Entomol 17:193–201Google Scholar
  67. Volny VP, Gordon DM (2002) Genetic basis for queen–worker dimorphism in a social insect. Proc Natl Acad Sci USA 99:6108–6111PubMedCrossRefGoogle Scholar
  68. Wagner D, Tissot M, Cuevas W, Gordon DM (2000) Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J Chem Ecol 26:2245–2257CrossRefGoogle Scholar
  69. Walin L, Seppä P (2001) Resource allocation in the red ant Myrmica ruginodis—an interplay of genetics and ecology. J Evol Biol 14:694–707CrossRefGoogle Scholar
  70. Wheeler DE (1994) Nourishment in ants: patterns in individuals and societies. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview, Boulder, CO, pp 245–278Google Scholar
  71. Wilson EO (1971) The insect societies. Harvard Univ. Press, Cambridge.Google Scholar
  72. Winston M, Higo HA, Slessor KN (1990) Effects of various dosages of queens mandibular gland pheromone on the inhibition of queen rearing in the honey bee (Hymenoptera: Apidae). Ann Entomol Soc Am 83:234–238Google Scholar
  73. Woyciechowski M, Łomnicki A (1987) Multiple mating of queens and the sterility of workers among eusocial Hymenoptera. J Theor Biol 128:317–327Google Scholar
  74. Zar JH (1984) Biostatistical analyses. Princeton Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Raphaël Boulay
    • 1
  • Abraham Hefetz
    • 2
  • Xim Cerdá
    • 1
  • Séverine Devers
    • 3
  • Wittko Francke
    • 4
  • Robert Twele
    • 4
  • Alain Lenoir
    • 3
  1. 1.Estación Biológica de DoñanaConsejo Superior de Investigaciones CientíficasSevillaSpain
  2. 2.Department of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
  3. 3.Institut de Recherches sur la Biologie de l’Insecte, CNRS UMR 6035, Faculté des SciencesUniversité François RabelaisToursFrance
  4. 4.Institut für Organische ChemieUniversität HamburgHamburgGermany

Personalised recommendations