Behavioral Ecology and Sociobiology

, Volume 61, Issue 3, pp 487–492 | Cite as

Foraging ability in the scorpionfly Panorpa vulgaris: individual differences and heritability

  • M. Missoweit
  • S. Engels
  • K. P. Sauer
Original Article


According to indicator models of sexual selection, mates may obtain indirect, i.e. genetic, benefits from choosing partners indicating high overall genetic quality by honest signals. In the scorpionfly Panorpa vulgaris, both sexes show mating preferences on the basis of the condition of the potential partners. Females prefer males that produce nuptial gifts (i.e. salivary secretions) during copulation, while males invest more nuptial gifts in females of high nutritional status. Both characters, males' ability to produce nuptial gifts and high nutritional status of females, are known to be reliable indicators of foraging ability. Thus, besides possible direct benefits, both sexes might also obtain indirect benefits in terms of “good foraging genes” by their choice and thereby increase the fitness of their offspring. A prerequisite for this possibility is the heritability of the respective trait. In the present study, we estimated the repeatability and the heritability of foraging ability. Our results indicate (1) a significant repeatability of individual foraging efficiencies in males and females and (2) a heritable component of this trait by a significant parent–offspring regression. These findings suggest that genetic benefits in terms of increased offspring foraging ability might contribute to selection for mating preferences in both sexes.


Heritability Foraging ability Indirect benefits Sexual selection Scorpionflies 



We would like to thank Julia Leven for help during breeding of both generations and Leif Engqvist for statistical advice. Further, we are grateful to Leif Engqvist, Tim Schmoll and two anonymous referees for critical reading and helpful comments on earlier versions. The study was financially supported by the Deutsche Forschungsgemeinschaft (Sa 259/7-1, 7-2). The experiments comply with the current laws of the Federal Republic of Germany.


  1. Andersson M (1994) Sexual selection. Princeton Univ. Press, PrincetonGoogle Scholar
  2. Boake CRB (1989) Repeatability: its role in evolutionary studies of mating behaviour. Evol Ecol 3:173–182CrossRefGoogle Scholar
  3. Bockwinkel G, Sauer KP (1993) Panorpa scorpionflies foraging in spider webs—kleptoparasitism at low risk. Bull Br Arachnol Soc 9:110–112Google Scholar
  4. Bockwinkel G, Sauer KP (1994) Resource dependence of male mating tactics in the scorpionfly, Panorpa vulgaris (Mecoptera, Panorpidae). Anim Behav 47:203–209CrossRefGoogle Scholar
  5. Byers GW, Thornhill R (1983) Biology of the Mecoptera. Ann Rev Entomol 28:203–228CrossRefGoogle Scholar
  6. Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91CrossRefGoogle Scholar
  7. Engels S, Sauer KP (2006) Love for sale and its fitness benefits:nuptial gifts in the scorpionfly Panorpa vulgaris represent paternal investment. Behaviour 143:825–837CrossRefGoogle Scholar
  8. Engqvist L, Sauer KP (2003) Amorous scorpionflies: causes and consequences of the long pairing prelude of Panorpa cognata. Anim Behav 63:667–675CrossRefGoogle Scholar
  9. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, HarlowGoogle Scholar
  10. Fleck S, Sindern J, Sauer KP (1994) Nuptial feeding in relation to food availability in the scorpionfly Panorpa vulgaris. Verh Dtsch Zool Ges 87:36Google Scholar
  11. Fleck S, Kegel G, Sauer KP (1996) The chemical composition of nuptial gifts in the scorpionfly Panorpa vulgaris (Mecoptera: Panorpidae). Verh Dtsch Zool Ges 89:241Google Scholar
  12. Gibbons ME, Ferguson AM, Lee DR (2005) Both learning and heritability affect foraging behaviour of red-backed salamander, Plethodon cinerus. Anim Behav 69:721–732CrossRefGoogle Scholar
  13. Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546PubMedGoogle Scholar
  14. Gwynne DT (1984) Courtship feeding increases female reproductive success in bushcrickets. Nature 307:361–363CrossRefGoogle Scholar
  15. Hill GE, Montgomerie R (1994) Plumage color signals nutritional condition in the house finch. Proc R Soc Lond B 258:47–52Google Scholar
  16. Houde AE (1997) Sex, color and mate choice in guppies. Princeton Univ. Press, PrincetonGoogle Scholar
  17. Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204PubMedGoogle Scholar
  18. Johnstone RA (1995) Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biol Rev 70:1–65PubMedCrossRefGoogle Scholar
  19. Johnstone RA, Grafen A (1992) Error-prone signalling. Proc R Soc Lond B 248:229–233Google Scholar
  20. Kaltenbach A (1978) Mecoptera (Schnabelfhafte, Schnabelfliegen). Handb Zool 4:1–111Google Scholar
  21. Karino K, Utagawa T, Shinjo S (2005) Heritability of the algal-foraging ability: an indirect benefit of female mate preference for males' carotenoid-based coloration in the guppy, Poecilia reticulata. Behav Ecol Sociobiol 59:1–5CrossRefGoogle Scholar
  22. Kokko H, Brooks R, Jennion MD, Morley J (2003) The evolution of mate choice and mating biases. Proc R Soc Lond B 270:653–664CrossRefGoogle Scholar
  23. Kurtz J, Sauer KP (1999) The immunocompetence handicap hypothesis: Testing the genetic predictions. Proc R Soc Lond B 266:2515–2522CrossRefGoogle Scholar
  24. Lemmon WC (1993) Heritability of selectively advantageous foraging behaviour in a small passerine. Evol Ecol 7:421–428CrossRefGoogle Scholar
  25. Lessels CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121Google Scholar
  26. Maynard Smith J (1991) Theories of sexual selection. Trends Ecol Evol 6:146–151CrossRefGoogle Scholar
  27. Møller AP, Alatalo RV (1999) Good-genes effects in sexual selection. Proc R Soc Lond B 266:85–91CrossRefGoogle Scholar
  28. Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197PubMedGoogle Scholar
  29. Petrie M (1983) Female moorhens compete for small fat males. Science 220:413–415CrossRefGoogle Scholar
  30. Roff AD (1992) The evolution of life histories: theory and analysis. Chapman and Hall, New YorkGoogle Scholar
  31. Sauer KP (1970) Zur Monotopbindung einheimischer Arten der Gattung Panorpa (Mecoptera) nach Untersuchungen im Freiland und im Laboratorium. Zool Jb Syst 97:201–284Google Scholar
  32. Sauer KP (1996) Sexuelle Selektion und ökologische Differenzierung. J Zoolog Syst Evol Res 34:235–249Google Scholar
  33. Sauer KP, Riebel W, Bockwinkel G (1990) Influence of sequence and duration of copulation of males of Panorpa vulgaris (Mecoptera) on their paternity. Verh Dtsch Zool Ges 83:656Google Scholar
  34. Sauer KP, Sindern J, Kall N (1997) Nutritional status of males and sperm transfer in the scorpionfly Panorpa vulgaris (Mecoptera: Panorpidae). Entomol Gen 31:189–204Google Scholar
  35. Sauer KP, Lubjuhn T, Sindern J, Kullmann H, Kurtz J, Epplen C, Epplen JT (1998) Mating system and sexual selection in the scorpionfly Panorpa vulgaris (Mecoptera, Panorpidae). Naturwissenschaften 85:219–228CrossRefGoogle Scholar
  36. Sauer KP, Epplen C, Over I, Lubjuhn T, Schmidt A, Gerken T, Epplen JT (1999) Molecular genetic analysis of remating frequencies and sperm competition in the scorpionfly Panorpa vulgaris (Imhoff and Labram). Behaviour 136:1107–1121CrossRefGoogle Scholar
  37. Sauer KP, Vermeulen A, Aumann N (2003) Temperature-dependent competition hierarchy: a mechanism stabilizing the phenological strategy in the scorpionfly Panorpa communis L. J Zool Syst Evol Res 41:109–117CrossRefGoogle Scholar
  38. Schmidt A, Sindern J, Sauer KP (1997) The mating system of scorpionflies: no example for resource-defence-polygyny! Verh Dtsch Zool Ges 90:255Google Scholar
  39. Sindern J (1996) Einfluss der Nahrungsdichte auf die Lebensgeschichte und Fitness von Individuen der Skorpionsfliege Panorpa vulgaris. Ph.D. thesis, Bonn University, BonnGoogle Scholar
  40. Sindern J, Kullmann H, Fleck S, Sauer KP (1994) Does “male choice” exist in the scorpionfly Panorpa vulgaris? Verh Dtsch Zool Ges 87:58Google Scholar
  41. Sokal RR, Rohlf FJ (1997) Biometry. The principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  42. Thornhill R (1987) The relative importance of intra- and interspecific competition in scorpionfly mating systems. Am Nat 130:711–729CrossRefGoogle Scholar
  43. Thornhill R, Sauer KP (1991) The notal organ of the scorpionfly: an adaptation to coerce mating duration. Behav Ecol 2:156–164Google Scholar
  44. Thornhill R, Sauer KP (1992) Genetic sire effects on the fighting ability of sons and daughters and mating success of sons in a scorpionfly. Anim Behav 43:255–264CrossRefGoogle Scholar
  45. Turner HN, Young SSY (1969) Quantitative genetics in sheep breeding. Cornell Univ. Press, New YorkGoogle Scholar
  46. Zahavi A (1975) Mate selection—a selection for handicap. J Theor Biol 53:205–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute for Evolutionary Biology and EcologyUniversity of BonnBonnGermany

Personalised recommendations