Ovariole number—a predictor of differential reproductive success among worker subfamilies in queenless honeybee (Apis mellifera L.) colonies

  • Gustavo R. Makert
  • Robert J. Paxton
  • Klaus Hartfelder
Original Article


A honeybee queen normally mates with 10–20 drones, and reproductive conflicts may arise among a colony’s different worker patrilines, especially after a colony has lost its single queen and the workers commence egg laying. In this study, we employed microsatellite markers to study aspects of worker reproductive competition in two queenless Africanized honeybee colonies. First, we determined whether there was a bias among worker patrilines in their maternity of drones and, second, we asked whether this bias could be attributed to differences in the degree of ovary activation of workers. Third, we relate these behavioral and physiological factors to ontogenetic differences between workers with respect to ovariole number. Workers from each of three (colony A) and one (colony B) patrilineal genotypes represented less than 6% of the worker population, yet each produced at least 13% of the drones in a colony, and collectively they produced 73% of the drones. Workers representing these genotypes also had more developed follicles and a greater number of ovarioles per ovary. Across all workers, ovariole development and number were closely correlated. This suggests a strong effect of worker genotype on the development of the ovary already in the postembryonic stages and sets a precedent to adult fertility, so that “workers are not born equal”. We hypothesize a frequency-dependent or “rare patriline” advantage to queenless workers over the parentage of males and discuss the maintenance of genetic variance in the reproductive capacity of workers.


Honeybee Patriline Ovary development Microsatellite Kin conflict 

Supplementary material

265_2006_225_MOESM1_ESM.pdf (17 kb)
Supplement 1(PDF 17 kb)
265_2006_225_MOESM2_ESM.pdf (17 kb)
Supplement 2(PDF 17 kb)
265_2006_225_MOESM3_ESM.pdf (11 kb)
Supplement 3(PDF 11 kb)
265_2006_225_MOESM4_ESM.pdf (10 kb)
Supplement 4(PDF 9 kb)


  1. Amdam GV, Norberg K, Fondrk K, Page RE (2004) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc Natl Acad Sci U S A 101:11350–11355PubMedCrossRefGoogle Scholar
  2. Barron AB, Oldroyd BP, Ratnieks FLW (2001) Worker reproduction in honey bees (Apis) and the anarchic syndrome: a review. Behav Ecol Sociobiol 50:199–208CrossRefGoogle Scholar
  3. Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc Biol Sci 351:947–975CrossRefGoogle Scholar
  4. Brown MJF, Schmid-Hempel P (2003) The evolution of female multiple mating in social Hymenoptera. Evolution 57:2067–2081PubMedGoogle Scholar
  5. Calis NM, Boot WJ, Allsopp MH, Beekman M (2002) Getting more than a fair share: nutrition of worker larvae related to social parasitism in the cape honey bee Apis mellifera capensis. Apidologie 33:193–202CrossRefGoogle Scholar
  6. Chakir M, David JR, Pla E, Capy P (1995) Genetic basis of some morphological differences between temperate and equatorial populations of Drosophila melanogaster. Experientia 51:744–748PubMedCrossRefGoogle Scholar
  7. Cole BJ (1983) Multiple mating and the evolution of social behavior in the Hymenoptera. Behav Ecol Sociobiol 12:191–201CrossRefGoogle Scholar
  8. Coyne JA, Rux J, David JR (1991) Genetics of morphological differences and hybrid sterility between Drosophila sechellia and its relatives. Genet Res 57:113–122PubMedCrossRefGoogle Scholar
  9. Crewe RM, Velthuis HHW (1980) False queens: a consequence of mandibular gland signals in worker honey bees. Naturwissenschaften 67:467–469CrossRefGoogle Scholar
  10. Dedej S, Hartfelder K, Aumeier P, Rosenkranz P, Engels W (1998) Caste determination is a sequential process: effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica). J Apic Res 37:183–190Google Scholar
  11. Engels W (1974) Occurrence and significance of vitellogenins in female castes of social Hymenoptera. Am Zool 14:1229–1237Google Scholar
  12. Estoup A, Turgeon J (1996) Microsatellite marker isolation with non-radioactive probes and amplification. http://www.inapg.inra.fr/dsa/microsat/microsat.htm
  13. Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B Biol Sci 258:1–7CrossRefGoogle Scholar
  14. Foster KR, Ratnieks FLW (2001a) Paternity, reproduction and conflict in vespine wasps: a model system for testing kin selection predictions. Behav Ecol Sociobiol 50:1–8CrossRefGoogle Scholar
  15. Foster KR, Ratnieks FLW (2001b) Convergent evolution of worker policing by egg eating in the honeybee and common wasp. Proc R Soc Lond B Biol Sci 268:169–174CrossRefGoogle Scholar
  16. Fuchs S, Moritz RFA (1999) Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav Ecol Sociobiol 45:269–275CrossRefGoogle Scholar
  17. Hartfelder K, Steinbrück G (1997) Germ cell cluster formation and cell death are alternatives in caste-specific differentiation of the larval honey bee ovary. Invertebr Reprod Dev 31:237–250Google Scholar
  18. Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Hepburn HR, Reece SL, Neumann P, Moritz RFA, Radloff SE (1999) Absconding in honeybees (Apis mellifera) in relation to queen status and mode of worker reproduction. Insectes Soc 46:323–326CrossRefGoogle Scholar
  20. Hillesheim E, Koeniger N, Moritz RFA (1989) Colony performance in honeybees (Apis mellifera capensis Esch.) depends on the proportion of subordinate and dominant workers. Behav Ecol Sociobiol 24:291–296CrossRefGoogle Scholar
  21. Hodin J, Riddiford LM (2000) Different mechanisms underlie phenotypic plasticity and interspecific variation for a reproductive character in drosophilids (Insecta : Diptera). Evolution 54:1638–1653PubMedGoogle Scholar
  22. Hoover SE, Keeling CI, Winston ML, Slessor KN (2003) The effect of queen pheromone on worker honey bee ovary development. Naturwissenschaften 90:477–480PubMedCrossRefGoogle Scholar
  23. Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR protocols. Academic, San Diego, CAGoogle Scholar
  24. Kraus B, Page RE (1998) Parasites, pathogens, and polyandry in social insects. Am Nat 151:383–391CrossRefPubMedGoogle Scholar
  25. Mackensen O (1943) The occurrence of parthenogenetic females in some strains of honeybees. J Econ Entomol 36:465–467Google Scholar
  26. Martin SJ, Beekman M, Wossler TC, Ratnieks FLW (2002) Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature 415:163–165PubMedGoogle Scholar
  27. Martin CG, Oldroyd BP, Beekman M (2004) Differential reproductive success among subfamilies in queenless honeybee (Apis mellifera L.) colonies. Behav Ecol Sociobiol 56:42–49CrossRefGoogle Scholar
  28. Montague CE, Oldroyd BP (1998) The evolution of worker sterility in honey bees: an investigation into a behavioral mutant causing failure of worker policing. Evolution 52:1408–1415CrossRefGoogle Scholar
  29. Moritz RFA (1989) Colony level and within colony level selection in honeybees. A two allele population model for Apis mellifera capensis. Behav Ecol Sociobiol 25:437–444CrossRefGoogle Scholar
  30. Moritz RFA, Hillesheim E (1985) Inheritance of dominance in honeybees (Apis mellifera capensis Esch.). Behav Ecol Sociobiol 17:87–89CrossRefGoogle Scholar
  31. Moritz RFA, Kryger P, Koeniger G, Koeniger N, Estoup A, Tingek S (1995) High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav Ecol Sociobiol 37:357–363CrossRefGoogle Scholar
  32. Moritz RFA, Kryger P, Allsopp MH (1996) Competition for royalty in bees. Nature 384:31CrossRefGoogle Scholar
  33. Moritz RFA, Kryger P, Allsopp MH (1999) Lack of worker policing in the Cape honeybee (Apis mellifera capensis). Behaviour 136:1079–1092CrossRefGoogle Scholar
  34. Moritz RFA, Simon UE, Crewe RM (2000) Pheromonal contest between honeybee workers (Apis mellifera capensis). Naturwissenschaften 87:395–397PubMedCrossRefGoogle Scholar
  35. Neumann P, Moritz RFA (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav Ecol Sociobiol 52:271–282CrossRefGoogle Scholar
  36. Oldroyd BP, Smolenski AJ, Cornuet J-M, Crozier RH (1994) Anarchy in the beehive. Nature 371:749CrossRefGoogle Scholar
  37. Oldroyd BP, Clifton MJ, Parker K, Wonsiri S, Rinderer TE, Crozier RH (1998) Evolution of mating behavior in the genus Apis and an estimate of mating frequency in Apis cerana (Hymenoptera–Apidae). Ann Entomol Soc Am 91:700–709Google Scholar
  38. Oldroyd BP, Wossler TC, Ratnieks FLW (2001) Regulation of ovary activation in worker honey-bees (Apis mellifera): larval signal production and adult response thresholds differ between anarchistic and wild-type bees. Behav Ecol Sociobiol 50:366–370CrossRefGoogle Scholar
  39. Paar J, Oldroyd BP, Huettinger E, Kastberger G (2004) Genetic structure of an Apis dorsata population: the significance of migration and colony aggregation. J Hered 95:119–126PubMedCrossRefGoogle Scholar
  40. Page RE, Erickson EH (1988) Reproduction by worker honey bees (Apis mellifera L.). Behav Ecol Sociobiol 23:117–126CrossRefGoogle Scholar
  41. Page RE, Robinson GE (1994) Reproductive competition in queenless honeybee colonies (Apis mellifera L.). Behav Ecol Sociobiol 35:99–107CrossRefGoogle Scholar
  42. Page RE, Robinson GE, Britton DS, Fondrk MK (1992) Genotypic variability for rates of behavioral development in worker honeybees (Apis mellifera L.). Behav Ecol 3:173–180CrossRefGoogle Scholar
  43. Page RE, Waddington KD, Hunt GJ, Fondrk MK (1995) Genetic determinants of honey bee foraging behaviour. Anim Behav 50:1617–1625CrossRefGoogle Scholar
  44. Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248CrossRefGoogle Scholar
  45. Palmer KA, Oldroyd BP, Franck P, Hadisoesilo S (2001) Very high paternity frequency in Apis nigrocincta. Insectes Soc 48:327–332CrossRefGoogle Scholar
  46. Pankiw T, Page RE (1999) The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol A Sens Neural Behav Physiol 185:207–213CrossRefGoogle Scholar
  47. Pankiw T, Page RE (2001) Genotype and colony environment affect honeybee (Apis mellifera L.) development and foraging behavior. Behav Ecol Sociobiol 51:87–94CrossRefGoogle Scholar
  48. Rachinsky A, Strambi C, Strambi A, Hartfelder K (1990) Caste and metamorphosis: hemolymph titers of juvenile hormone and ecdysteroids in last instar honey bee larvae. Gen Comp Endocrinol 79:31–38PubMedCrossRefGoogle Scholar
  49. Ratnieks FLW (1993) Egg laying, egg removal, and ovary development by workers in queenright honey bee colonies. Behav Ecol Sociobiol 32:191–198CrossRefGoogle Scholar
  50. Robinson GE, Page RE (1995) Genotypic constraints on plasticity for corpse removal in honeybee colonies. Anim Behav 49:867–876CrossRefGoogle Scholar
  51. Ross KG (2001) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10:265PubMedCrossRefGoogle Scholar
  52. Ruttner F, Hesse B (1981) Rassenspezifische Unterschiede in Ovarentwicklung und Eiablage von weisellosen Arbeiterinnen der Honigbiene Apis mellifera. Apidologie 12:159–183CrossRefGoogle Scholar
  53. Sanguinetti C, Dias Netto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:209–214Google Scholar
  54. Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Philos Trans R Soc Biol Sci 354:507–515CrossRefGoogle Scholar
  55. Schmidt Capella IC, Hartfelder K (1998) Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee (Apis mellifera L.) ovary. J Insect Physiol 44:385–391CrossRefGoogle Scholar
  56. Schmidt Capella IC, Hartfelder K (2002) Juvenile hormone-dependent interaction of actin and spectrin in polymorphic differentiation of the larval honey bee ovary. Cell Tissue Res 307:265–272PubMedCrossRefGoogle Scholar
  57. Simon UE, Moritz RFA, Crewe RM (2005) Reproductive dominance among honeybee workers in experimental groups of Apis mellifera capensis. Apidologie 36:413–419CrossRefGoogle Scholar
  58. Spivak M, Fletcher DJC, Breed MD (1991) The “African” honey bee. Westview, Boulder, CO, pp 435Google Scholar
  59. Tanaka ED, Hartfelder K (2004) The initial stages of oogenesis in the honey bee, Apis mellifera, in the context of caste, social conditions and mating. Arthropod Struct Dev 33:431–442PubMedCrossRefGoogle Scholar
  60. Tucker K (1958) Automictic parthenogenesis in the honey bee. Genetics 43:299–316PubMedGoogle Scholar
  61. Vanderblom J (1991) Social regulation of egg-laying by queenless honeybee workers (Apis mellifera L). Behav Ecol Sociobiol 29:341–346CrossRefGoogle Scholar
  62. Vanderblom J, Boot WJ, Velthuis HHW (1994) Simultaneous queen raising and egg laying by workers in Africanized honeybee colonies (Apis mellifera L.) in Costa-Rica. Apidologie 25:367–374CrossRefGoogle Scholar
  63. Velthuis HH (1970) Ovarian development in Apis mellifera worker bees. Entomol Exp Appl 13:377–394CrossRefGoogle Scholar
  64. Velthuis HHW, Ruttner F, Crewe RM (1990) Differentiation in reproductive physiology and behaviour during the development of laying worker honey bees. In: Engels W (ed) Social insects—an evolutionary approach to caste and reproduction. Springer, Berlin Heidelberg New York, pp 231–243Google Scholar
  65. Visscher PK (1989) A quantitative study of worker reproduction in honeybee colonies. Behav Ecol Sociobiol 25:247–254CrossRefGoogle Scholar
  66. Wayne ML, Mackay TFC (1998) Quantitative genetics of ovariole number in Drosophila melanogaster. II. Mutational variation and genotype-environment interaction. Genetics 148:201–210PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gustavo R. Makert
    • 1
  • Robert J. Paxton
    • 2
  • Klaus Hartfelder
    • 3
  1. 1.Depto. Genética, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.School of Biological SciencesQueen’s University BelfastBelfastUK
  3. 3.Depto. de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations