Behavioral Ecology and Sociobiology

, Volume 58, Issue 2, pp 181–189

Major histocompatibility complex and mate choice in a monogamous rodent

Original Article


A growing number of studies indicate that females can increase the viability of their offspring by gaining direct benefits such as parental care or genetic advantages through selective mating with certain males. Among the best candidates for the genetic basis of mate choice in vertebrates are the genes of the major histocompatibility complex (MHC) because these highly polymorphic genes may increase offspring viability and provide direct cues for mate choice. A free-ranging, pair-living rodent was used as an example to investigate MHC-dependent mate choice in an obligate monogamous species, the Malagasy giant jumping rat Hypogeomys antimena. Two possible mechanisms of mate choice were tested. First, mate choice may occur to increase the heterozygosity of MHC genes in the progeny and, second, mates might choose each other according to the degree of dissimilarity of their functional MHC DRB (exon 2) proteins in order to maximise the allelic divergence in their offspring. Analyses of 65 Hypogeomys couples failed to confirm associations of mating patterns with the MHC genotype to increase heterozygosity or MHC allelic divergence in the progeny. Also, no evidence for mechanisms to increase the allelic divergence was found in sex-specific analyses where a male or female, respectively, migrated to and was accepted by a territory and burrow holder of the opposite sex. However, the frequency distribution of 0, 1 or 2 new alleles potentially available for the progeny differed significantly when a new male was chosen by a territory-holding female. In contrast to current models, genetically similar instead of dissimilar mates seem to be the preferred choice. This is the first study investigating the role of the MHC in mate selection in an obligate monogamous rodent.


MHC Mate choice Monogamous rodent Hypogeomys antimena Madagascar 

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Biozentrum Grindel, Animal Ecology and ConservationUniversity of HamburgHamburgGermany

Personalised recommendations