Behavioral Ecology and Sociobiology

, Volume 56, Issue 5, pp 458–463 | Cite as

Sperm utilization pattern in the honeybee (Apis mellifera)

  • Helge Schlüns
  • Gudrun Koeniger
  • Nikolaus Koeniger
  • Robin F. A. Moritz
Original Article

Abstract

Queen honeybees (Apis mellifera) mate with a large number of drones on their nuptial flights. Not all drones contribute equally to the queen’s offspring and the queen’s utilization pattern of spermatozoa from different drones has an important impact on the genetic composition of the colony. Here we study the consequences of sperm use for the fitness of the queen’s mates with microsatellite DNA-fingerprinting. Eight queens were instrumentally inseminated with semen of six or seven drones. Each drone contributed either 0.5 µl or 1.0 µl semen, respectively, and we analyzed both the impact of the insemination sequence and the amount of semen on the sperm utilization. Our data show no significant effect of the insemination sequence but a strong impact of the semen volume of a drone on the frequency of his worker offspring in the colony. This effect was not linear and the patriline frequencies of the drones contributing larger semen volumes are disproportionately enhanced. If these observations are also valid for natural matings, drone honeybees should maximize the number of sperm but not apply specific mating tactics to be first or last male in a mating sequence.

Keywords

Polyandry Sperm utilization Microsatellite DNA Honeybee Drone 

References

  1. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  2. Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164CrossRefPubMedGoogle Scholar
  3. Baer B (2003) Bumblebees as model organisms to study male sexual selection in social insects. Behav Ecol Sociobiol 54:521–533CrossRefGoogle Scholar
  4. Baer B, Schmid-Hempel P (2000) The artificial insemination of bumblebee queens. Insectes Soc 47:183–187Google Scholar
  5. Baer B, Schmid-Hempel P, Hoeg JT, Boomsma JJ (2003) Sperm length, sperm storage and mating system characteristics in bumblebees. Insectes Soc 50:101–108CrossRefGoogle Scholar
  6. Berg S (1991) Investigation on rates of large and small drones at a drone congregation area. Apidologie 22:437–438Google Scholar
  7. Bresslau E (1905) Der Samenblasengang der Bienenkönigin. Zool Anz 29:299–325Google Scholar
  8. Crozier RH, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera—disunity in diversity? Ann Zool Fenn 38:267–285Google Scholar
  9. Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B 258:1–7Google Scholar
  10. Estoup A, Garnery L, Solignac M, Cornuet JM (1995) Microsatellites variation in honeybee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation model. Genetics 140:679–695PubMedGoogle Scholar
  11. Franck P, Coussy H, Le Conte Y, Solignac M, Garnery L, Cornuet JM (1999) Microsatellite analysis of sperm admixture in honeybee. Insect Mol Biol 8:419–421CrossRefPubMedGoogle Scholar
  12. Franck P, Solignac M, Vautrin D, Cornuet JM, Koeniger G, Koeniger N (2002) Sperm competition and last-male precedence in the honeybee. Anim Behav 64:503–509CrossRefGoogle Scholar
  13. Gage MJG, Morrow EH (2003) Experimental evidence for the evolution of numerous, tiny sperm via sperm competition. Curr Biol 13:754–757CrossRefPubMedGoogle Scholar
  14. Gries M, Koeniger N (1996) Straight forward to the queen: Pursuing honeybee drones (Apis mellifera L) adjust their body axis to the direction of the queen. J Comp Physiol A 179:539–544Google Scholar
  15. Haberl M, Tautz D (1998) Sperm usage in honey bees. Behav Ecol Sociobiol 42:247–255CrossRefGoogle Scholar
  16. Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–52PubMedGoogle Scholar
  17. Harcourt AH (1997) Sperm competition in primates. Am Nat 149:189–194CrossRefGoogle Scholar
  18. Harcourt AH, Harvey PH, Larson SG, Short RV (1981) Testis weight, body weight and breeding system in primates. Nature 293:55–57PubMedGoogle Scholar
  19. Hepburn HR, Youthed C, Illgner P, Radloff SE, Brown RE (1998) Production of aerodynamic power in mountain honeybees (Apis mellifera). Naturwissenschaften 85:389–390CrossRefGoogle Scholar
  20. Hunter FM, Birkhead TR (2002) Sperm viability and sperm competition in insects. Curr Biol 12:121–123CrossRefPubMedGoogle Scholar
  21. Knight J (2002) Sexual stereotypes. Nature 415:254–256CrossRefPubMedGoogle Scholar
  22. Koeniger G (1990) The role of mating sign in honey bees, Apis mellifera L.: does it hinder or promote multiple mating? Anim Behav 39:444–449Google Scholar
  23. Koeniger G, Koeniger N, Fabritius M (1979) Some detailed observations of mating in the honeybee. Bee World 60:53–57Google Scholar
  24. Koeniger N, Koeniger G (2000) Reproductive isolation among species of the genus Apis. Apidologie 31:313–339CrossRefGoogle Scholar
  25. Kraus FB, Neumann P, Scharpenberg H, van Praagh J, Moritz RFA (2003) Male fitness of honeybee colonies (Apis mellifera L.). J Evol Biol 16:914–920PubMedGoogle Scholar
  26. Kraus FB, Neumann P, van Praagh J, Moritz RFA (2004) Sperm limitation and the evolution of extreme polyandry in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 55:494–501CrossRefGoogle Scholar
  27. Kryger P, Moritz RFA (1997) Lack of kin recognition in swarming honeybees (Apis mellifera). Behav Ecol Sociobiol 40:271–276CrossRefGoogle Scholar
  28. Laidlaw HH Jr, Page RE Jr (1984) Polyandry in honey bees (Apis mellifera L.): sperm utilization and intracolony genetic relationships. Genetics 108:985–997Google Scholar
  29. Mackensen O (1951) Viability and sex determination in the honeybee. Genetics 36:500–509Google Scholar
  30. Møller AP (1988) Ejaculate quality, testes size and sperm competition in primates. J Hum Evol 17:479–488Google Scholar
  31. Møller AP, Birkhead TR (1998) Sperm competition and sexual selection. Academic, LondonGoogle Scholar
  32. Moritz RFA (1981) Der Einfluss der Inzucht auf die Fitness der Drohnen von Apis mellifera carnica. Apidologie 12:41–55Google Scholar
  33. Moritz RFA (1986) Intracolonial worker relationship and sperm competition in the honeybee (Apis mellifera L.). Experientia 42:445–448Google Scholar
  34. Moritz RFA (1989) Durchführung der Besamung. In: Moritz RFA (ed) Die instrumentelle Besamung der Bienenkönigin. Apimonda, Bukarest, pp 73–95Google Scholar
  35. Moritz RFA, Kryger P, Allsopp MH (1996) Competition for royalty in bees. Nature 384:31Google Scholar
  36. Neumann P, Moritz RFA (2000) Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Insectes Soc 47:271–279Google Scholar
  37. Page RE Jr (1986) Sperm utilization in social insects. Annu Rev Entomol 31:297–320CrossRefGoogle Scholar
  38. Page RE Jr, Metcalf RA (1982) Multiple mating, sperm utilization, and social evolution. Am Nat 119:263–281CrossRefGoogle Scholar
  39. Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248CrossRefGoogle Scholar
  40. Palmer KA, Oldroyd BP (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90:265–268CrossRefPubMedGoogle Scholar
  41. Parker GA (1970a) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567Google Scholar
  42. Parker GA (1970b) Sperm competition and its evolutionary effect on copulation duration in the fly Scatophaga stercoraria. J Insect Physiol 16:1301–1328CrossRefGoogle Scholar
  43. Parker GA (1993) Sperm competition games: sperm size and sperm number under adult control. Proc R Soc Lond B 253:245–254PubMedGoogle Scholar
  44. Parker GA (1998) Sperm competition and the evolution of ejaculates: towards a theory base. In: Møller AP, Birkhead TR (eds) Sperm competition and sexual selection. Academic, London, pp 3–54Google Scholar
  45. Pitnick S, Brown WD (2000) Criteria for demonstrating female sperm choice. Evolution 54:1052–1056PubMedGoogle Scholar
  46. Pitnick S, Miller GT, Reagan J, Holland B (2001) Males’ evolutionary responses to experimental removal of sexual selection. Proc R Soc Lond B 268:1071–1080CrossRefPubMedGoogle Scholar
  47. Radloff SE, Hepburn HR, Koeniger G (2003) Comparison of flight design of Asian honeybee drones. Apidologie 34:353–358CrossRefGoogle Scholar
  48. Ratnieks FLW, Monnin T, Foster KR (2001) Inclusive fitness theory: novel predictions and tests in eusocial Hymenoptera. Ann Zool Fenn 38 (3–4):201–214Google Scholar
  49. Ribbands CR (1953) The behaviour and social life of honeybees. Bee Research Association, LondonGoogle Scholar
  50. Rinderer TE, Collins AM, Pesante D (1985) A comparison of Africanized and European drones: weights, mucus gland and seminal vesicle weights, and counts of spermatozoa. Apidologie 16:407–412Google Scholar
  51. Ruttner F, Koeniger G (1971) Die Füllung der Spermatheka der Bienenkönigin. Z Vgl Physiol 72:411–422Google Scholar
  52. Schlüns H, Schlüns EA, van Praagh J, Moritz RFA (2003) Sperm numbers in drone honeybees (Apis mellifera L.) depend on body size. Apidologie 34:577–584CrossRefGoogle Scholar
  53. Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, PrincetonGoogle Scholar
  54. Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New YorkGoogle Scholar
  55. Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet JM (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol Ecol Notes 3:307–311CrossRefGoogle Scholar
  56. StatSoft I (2001) STATISTICA für Windows. StatSoft, Tulsa, OklaGoogle Scholar
  57. Strassmann JE (2001) The rarity of multiple mating by females in the social Hymenoptera. Insectes Soc 48:1–13Google Scholar
  58. Taber S III (1955) Sperm distribution in the spermatheca of multiple-mated queen honey bees. J Econ Entomol 48:522–525Google Scholar
  59. Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc Lond B 270:99–103CrossRefPubMedGoogle Scholar
  60. Tarpy DR, Nielsen DI (2002) Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies (Apis mellifera). Ann Entomol Soc Am 95:513–528Google Scholar
  61. Tarpy DR, Page RE Jr (2001) The curious promiscuity of queen honey bees (Apis mellifera): evolutionary and behavioral mechanisms. Ann Zool Fenn 38:255–265Google Scholar
  62. Tilley CA, Oldroyd BP (1997) Unequal subfamily proportions among honey bee queen and worker brood. Anim Behav 54:1483–1490CrossRefPubMedGoogle Scholar
  63. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  64. Winston ML (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar
  65. Woyciechowski M, Król E (1996) On intraoviductal sperm competition in the honeybee (Apis mellifera). Folia BiolKrakow 44:51–53Google Scholar
  66. Woyke J (1960) Naturalne i sztuczne unasienianie matek pszczelich. Pszczelnicze Zesz Nauk 4:183–275Google Scholar
  67. Woyke J (1983) Length of haploid and diploid spermatozoa of the honeybee and the question of production of triploid workers. J Apic Res 22 (3):146–149Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Helge Schlüns
    • 1
    • 2
  • Gudrun Koeniger
    • 3
  • Nikolaus Koeniger
    • 3
  • Robin F. A. Moritz
    • 1
  1. 1.Institut für ZoologieMartin-Luther-Universität Halle-WittenbergGermany
  2. 2.School of Tropical BiologyJames Cook UniversityTownsvilleAustralia
  3. 3.Institut für Bienenkunde (Polytechnische Gesellschaft)Johann Wolfgang Goethe-Universität Frankfurt am MainGermany

Personalised recommendations