Advertisement

Behavioral Ecology and Sociobiology

, Volume 55, Issue 5, pp 494–501 | Cite as

Sperm limitation and the evolution of extreme polyandry in honeybees (Apis mellifera L.)

  • F. B. Kraus
  • P. Neumann
  • J. van Praagh
  • R. F. A. Moritz
Original Article

Abstract

Honeybee queens (Apis mellifera) show extreme levels of polyandry, but the evolutionary mechanisms underlying this behaviour are still unclear. The “sperm-limitation hypothesis”, which assumes that high levels of polyandry are essential to get a lifetime sperm supply for large and long-lived colonies, has been widely disregarded for honeybees because the semen of a single male is, in principle, sufficient to fill the spermatheca of a queen. However, the inefficient post-mating sperm transfer from the queen’s lateral oviducts into the spermatheca requires multiple matings to ensure an adequate spermatheca filling. Males of the African honeybee subspecies A. m. capensis have fewer sperm than males of the European subspecies A. m. carnica. Thus, given that sperm limitation is a cause for the evolution of multiple mating in A. mellifera, we would expect A. m. capensis queens to have higher mating frequencies than A. m. carnica. Here we show that A. m. capensis queens indeed exhibit significantly higher mating frequencies than queens of A. m. carnica, both in their native ranges and in an experiment on a North Sea island under the same environmental conditions. We conclude that honeybee queens try to achieve a minimum number of matings on their mating flights to ensure a sufficient lifetime sperm supply. It thus seems premature to reject the sperm-limitation hypothesis as a concept explaining the evolution of extreme polyandry in honeybees.

Keywords

Apis mellifera Honeybee Evolution Polyandry Sperm-limitation hypothesis 

Notes

Acknowledgements

We wish to thank N. Koeniger and S. Fuchs for providing the A. m. capensis queens for the experiments on the island of Neuwerk. Appreciation is also expressed to S. Härtel for the A. m. capensis samples from the Western Cape, and to K. Heßler and P. Leibe for technical assistance. Financial support was granted by the EU BABE network (F.B.K., R.F.A.M.) and the DFG (P.N., R.F.A.M.). All experiments and beekeeping complied with the laws of Germany.

References

  1. Alber M, Jordan M, Ruttner H (1955) Von der Paarung der Honigbiene. Z Bienenforsch 3:1–28Google Scholar
  2. Allsopp MH, Hepburn HR (1997) Swarming, supersedure and the mating system of a natural population of honeybees (Apis mellifera capensis). J Apic Res 36:41–48Google Scholar
  3. Baer B, Schmid-Hempel P (2000) The artificial insemination of bumblebee queens. Insectes Soc 47:183–187Google Scholar
  4. Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc Lond B 351:947–975Google Scholar
  5. Bresslau E (1905) Der Samenblasengang der Bienenkönigin. Zool Anz 29:299–323Google Scholar
  6. Buys B (1990) Features of basic reproduction in drones and queens of the Cape honeybee Apis mellifera capensis. In: Anderson RH, Buys B (eds) Proceedings of the International Beekeepers’ Symposium: Bees and beekeeping in Southern Africa, Posa & WPBA, Cape Town, pp 106–109Google Scholar
  7. Cole BJ (1983) Multiple mating and the evolution of social behaviour in the Hymenoptera. Behav Ecol Sociobiol 12:191–201Google Scholar
  8. Cornuet JM, Aries F (1980) Number of sex alleles in a sample of honeybee colonies. Apidologie 11:87–93Google Scholar
  9. Crozier RH, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera—disunity in diversity? Ann Zool Fenn 38:267–285Google Scholar
  10. Crozier RH, Page RE (1985) On being the right size: male contributions and multiple matings in social Hymenoptera. Behav Ecol Sociobiol 18:105–115Google Scholar
  11. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Oxford University Press, OxfordGoogle Scholar
  12. Estoup A, Solignac M, Harry M, Cornuet JM (1993) Characterization of (GT)-n and (CT)-n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Res 21:1427–1431PubMedGoogle Scholar
  13. Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B 258:1–7Google Scholar
  14. Estoup A, Garnery L, Solignac M, Cornuet JM (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679–695PubMedGoogle Scholar
  15. Fjerdingstad EJ, Boomsma JJ (1998) Multiple mating increases the sperm stores of Atta colombica leafcutter ant queens. Behav Ecol Sociobiol 42:257–261CrossRefGoogle Scholar
  16. Fuchs S, Moritz RFA (1998) Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav Ecol Sociobiol 45:269–275CrossRefGoogle Scholar
  17. Fuchs S, Schade V (1994) Lower performance in honeybee colonies of uniform paternity. Apidologie 25:155–168Google Scholar
  18. Gadau J, Strehl CP, Oettler J, Holldobler B (2003) Determinants of intracolonial relatedness in Pogonomyrmex rugosus (Hymenoptera; Formicidae): mating frequency and brood raids. Mol Ecol 12:1931–1938CrossRefPubMedGoogle Scholar
  19. Gary NE (1992) Activities and behaviour of honeybees. In: Graham JM (ed) The hive and the honey bee. Dadant, Hamilton, Ill, pp 269–372Google Scholar
  20. Goodisman MAD, Matthews RW, Crozier RH (2002) Mating and reproduction in the wasp Vespula germanica. Behav Ecol Sociobiol 51:497–502CrossRefGoogle Scholar
  21. Haberl M, Tautz D (1998) Sperm usage in honey bees. Behav Ecol Sociobiol 42:247–255CrossRefGoogle Scholar
  22. Hamilton WD (1964) The genetical evolution of social behaviour. I and II. J Theor Biol 7:1–52PubMedGoogle Scholar
  23. Hamilton WD (1987) Kinship, recognition, disease and intelligence: constraints of social evolution. In: Ito Y, Brown JL, Kikkawa J (eds) Animal societies. Japanese Scientific Society, Tokyo, pp 81–102Google Scholar
  24. Hepburn HR, Crewe RM (1991) Portrait of the Cape honeybee, Apis mellifera capensis. Apidologie 22:567–580Google Scholar
  25. Hepburn HR, Jacot-Guillarmod A (1991) The Cape honeybee and the fynbos biome. S Afr J Sci 87:70–73Google Scholar
  26. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  27. Koeniger G (1976) Einfluss der Kopulation auf den Beginn der Eiablage bei der Bienenkönigin (Apis mellifera L.). Apidologie 7:343–355Google Scholar
  28. Koeniger G (1981) In welchem Abschnitt des Paarungsverhaltens der Bienenkönigin findet die Induktion der Eiablage statt? Apidologie 12:329–343Google Scholar
  29. Koeniger G, Ruttner F (1989) Mating behaviour and anatomy of the reproductive organs. In: Moritz RFA (ed) The instrumental insemination of the queen bee. Apimondia, Bucharest, p 19Google Scholar
  30. Koeniger G, Koeniger N, Pechhacker H, Ruttner F, Berg S (1989) Assortative mating in a mixed population of European honeybees, Apis mellifera ligustica and Apis mellifera carnica. Insectes Soc 36:129–138Google Scholar
  31. Koeniger G, Koeniger N, Mardan M, Punchihewa R, Otis G (1990) Numbers of spermatozoa in queens and drones indicate multiple mating of queens in Apis andreniformis and Apis dorsata. Apidologie 21:281–286Google Scholar
  32. Koeniger G, Koeniger N, Tingek S, Kelitu A (2000) Mating flights and sperm transfer in the dwarf honeybee Apis andreniformis (Smith, 1858). Apidologie 31:301–311CrossRefGoogle Scholar
  33. Koeniger N, Koeniger G, Wongsiri S (1989) Mating and sperm transfer in Apis florea. Apidologie 20:413–418Google Scholar
  34. Koeniger N, Koeniger G, Mardan M (1994) Mimicking a honeybee queen? Vespa affinis indosinensis (Perez 1910) hunts drones of Apis cerana F. 1793. Ethology 98:149–153Google Scholar
  35. Kraus FB, Neumann P, Praagh J van, Moritz RFA (2003) Male mating success of honeybee colonies (Apis mellifera L.). J Evol Biol 16:903–913PubMedGoogle Scholar
  36. Laidlaw HH, Page RE (1984) Polyandry in the honey bees (Apis mellifera L.): sperm utilization and intracolony genetic relationships. Genetics 108:985–997Google Scholar
  37. Mackensen O (1947) Effect of carbon dioxide on initial oviposition of artificially inseminated and virgin queen bees. J Econ Entomol 40:344–349Google Scholar
  38. Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore, MdGoogle Scholar
  39. Moritz RFA (1986) Intracolonial worker relationship and sperm competition in the honeybee (Apis mellifera). Experientia 42:445–448Google Scholar
  40. Moritz RFA, Kryger P, Koeniger G, Koeniger N, Estoup A, Tingek S (1995) High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav Ecol Sociobiol 37:357–363CrossRefGoogle Scholar
  41. Moritz RFA, Kryger P, Allsopp M (1996) Competition for royalty in bees. Nature 384:521–522Google Scholar
  42. Neumann P, Moritz RFA (2000) Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Insectes Soc 47:271–279Google Scholar
  43. Neumann P, Praagh JP van, Moritz RFA, Dustmann JH (1999a) Testing the reliability of a potential island mating apiary using DNA microsatellites. Apidologie 30:257–276Google Scholar
  44. Neumann P, Moritz RFA, Praagh JP van (1999b) Queen mating frequency in different types of honeybee mating apiaries. J Apic Res 38:11–18Google Scholar
  45. Neumann P, Moritz RFA, Mautz D (1999c) Using DNA microsatellites for maternity testing in honeybees (Apis mellifera L.). Apidologie 30:505–512Google Scholar
  46. Oldroyd BP, Rinderer TE, Harbo JR, Buco SM (1992) Effects of intracolonial genetic diversity on honey bee (Hymenoptera: Apidae) colony performance. Ann Entomol Soc Am 85:335–343Google Scholar
  47. Oldroyd BP, Clifton MJ, Wongsiri S, Rinderer TE, Sylvester HA, Crozier RH (1997) Polyandry in the genus Apis, particulary Apis andreniformis. Behav Ecol Sociobiol 40:17–26CrossRefGoogle Scholar
  48. Page RE, Robinson GE, Fondrk MK (1989) Genetic specialists, kin recognition and nepotism in honey-bee colonies. Nature 338:576–579CrossRefGoogle Scholar
  49. Page RE, Robinson GE, Fondrk MK, Nasr ME (1995) Effects of worker genotypic diversity on honey bee colony development and behaviour (Apis mellifera L.). Behav Ecol Sociobiol 36:387–397CrossRefGoogle Scholar
  50. Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248CrossRefGoogle Scholar
  51. Palmer KA, Oldroyd BP (2001) Mating frequencies in Apis florea revisited (Hymenoptera, Apidae). Insectes Soc 48:40–43Google Scholar
  52. Pamilo P (1991) Life span of queens in the ant Formica exsecta. Insectes Soc 38:111–119Google Scholar
  53. Pamilo P (1993) Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70:472–480Google Scholar
  54. Ribbands CR (1953) The behaviour and social life of honeybees. Bee Research Association, LondonGoogle Scholar
  55. Rinderer T, Collins M, Pesante D (1985) A comparison of Africanized and European drones: weight, mucus gland and seminal vesicle weights, and count of spermatozoa. Apidologie 16:407–412Google Scholar
  56. Röseler PF (1973) Die Anzahl Spermien im Receptaculum seminis von Hummelköniginnen (Hymenoptera, Apidae, Bombinae). Apidologie 4:267–274Google Scholar
  57. Rowe DJ, Rinderer TE, Stelzer JA, Oldroyd BP, Crozier RH (1997) Seven polymorphic microsatellite loci in honeybees (Apis mellifera). Insectes Soc 44:85–93CrossRefGoogle Scholar
  58. Ruttner F (1956) The mating of the honey bee. Bee World 37:2–24Google Scholar
  59. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. Ruttner H (1980) Haltung der Königinnen während der Paarungszeit. In: Ruttner F (ed) Königinnenzucht. Apimondia, Bucharest, pp 225–267Google Scholar
  61. Schlüns H, Schlüns EA, Praagh JP van, Moritz RFA (2003) Sperm numbers in drone honeybees (Apis mellifera) depend on bodysize. Apidologie 34 (in press)Google Scholar
  62. Schmid-Hempel P (1994) Infection and colony variability in social insects. Philos Trans R Soc Lond B 346:313–321Google Scholar
  63. Seeley T, Seeley R, Akratanakul P (1982) Colony defense strategies of the honeybee in Thailand. Ecol Monogr 52:43–63Google Scholar
  64. Tarpy DR, Nielsen DI (2002) Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies (Hymenoptera: Apidae). Ann Entomol Soc Am 95:513–528Google Scholar
  65. Tarpy DR, Page RE (2001) The curious promiscuity of honey bees (Apis mellifera): evolutionary and behavioural mechanisms. Ann Zool Fenn 38:255–265Google Scholar
  66. Tarpy DR, Page RE (2002) Sex determination and the evolution of polyandry in honey bees (Apis mellifera). Behav Ecol Sociobiol 52:143–150CrossRefGoogle Scholar
  67. Wattanachaiyinhcharoen W, Oldroyd BP, Wongsiri S, Palmer K, Paar S (2003) A scientific note on the mating frequency of Apis dorsata Fabricius. Apidologie 34:85–86CrossRefGoogle Scholar
  68. Wille H (1974) Bienenkrankheiten. In: Fischer G, Gerig L, Kobel F, Luterbacher W, Maurizio A, Moser K, Schäfer H, Schaer E. Wille H, Wipfli E, Wipfli P (eds) Der Schweizerische Bienenvater. Aarau, Frankfurt am Main, pp 298–299Google Scholar
  69. Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MassGoogle Scholar
  70. Winston (1987) The biology of the honeybee. Harvard University Press, Cambridge, MassGoogle Scholar
  71. Woyke J (1962) Natural and artificial insemination of queen honeybees. Bee World 43:21–25Google Scholar
  72. Woyke J (1964) Causes of repeated mating flights by queen honeybees. J Apic Res 3:17–23Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • F. B. Kraus
    • 1
  • P. Neumann
    • 1
    • 2
  • J. van Praagh
    • 3
  • R. F. A. Moritz
    • 1
  1. 1.Institut für ZoologieMartin-Luther-Universität Halle-WittenbergHalle/SaaleGermany
  2. 2.Department of Zoology and EntomologyRhodes UniversityGrahamstown South Africa
  3. 3.Niedersächsisches Landesinstitut für BienenkundeCelleGermany

Personalised recommendations