International Orthopaedics

, Volume 43, Issue 4, pp 987–993 | Cite as

Adjacent segment degeneration after fusion spinal surgery—a systematic review

  • Ko HashimotoEmail author
  • Toshimi Aizawa
  • Haruo Kanno
  • Eiji Itoi



Adjacent segment degeneration (ASDeg) and disease (ASDis) have become major concerns after fusion surgery. However, there is no definitive data or knowledge about the incidence or risk factors. The review discusses the incidence and risk factors and prevention of ASDeg and ASDis in the relevant literature.


We performed a systematic review of meta-analyses, randomized control trials, and cohort studies published in English to provide evidence-based information about ASDeg and ASDis.


According to a meta-analysis, the pooled incidence of ASDeg after lumbar and cervical fusion surgery was 26.6% and 32.8%, respectively. Approximately 1/4–1/3 of ASDeg progressed to ASDis. Risk factors after cervical fusion surgery were young age, pre-existing disc degeneration, short fusion segment, high T1 slope, disruption of adjacent soft tissue, and plate placement close to the adjacent disc. The risk factors of ASDeg and ASDis after lumbar fusion surgery were age, genetic factors, high body mass index, pre-existing adjacent segment degeneration, laminectomy at the adjacent level of fusion, excessive distraction of the fusion level, insufficient lumbar lordosis, multilevel fixation, floating fusion, coronal wedging of L5-S disc, pelvic tilt, and osteoporosis. Motion-preserving surgeries seem to have less risk of ASDeg and ASDis than conventional fusion surgery both in the lumbar and cervical spine.


The existent literature points out variables involved in ASDeg and ASDis. High evidence-level studies should provide more relevant data to guide strategies for avoiding ASDeg and ASDis.


Adjacent segment degeneration Adjacent segment disease Fusion surgery Lumbar spine Cervical spine 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG (2010) Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 303(13):1259–1265CrossRefGoogle Scholar
  2. 2.
    Kotwal S, Pumberger M, Hughes A, Girardi F (2011) Degenerative scoliosis: a review. HSS J 7(3):257–264CrossRefGoogle Scholar
  3. 3.
    Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4(6 Suppl):190S–194SCrossRefGoogle Scholar
  4. 4.
    Harrop JS, Youssef JA, Maltenfort M, Vorwald P, Jabbour P, Bono CM, Goldfarb N, Vaccaro AR, Hilibrand AS (2008) Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty. Spine (Phila Pa 1976) 33(15):1701–1707CrossRefGoogle Scholar
  5. 5.
    Saavedra-Pozo FM, Deusdara RA, Benzel EC (2014) Adjacent segment disease perspective and review of the literature. Ochsner J 14(1):78–83Google Scholar
  6. 6.
    Anakwenze OA, Auerbach JD, Milby AH, Lonner BS, Balderston RA (2009) Sagittal cervical alignment after cervical disc arthroplasty and anterior cervical discectomy and fusion: results of a prospective, randomized, controlled trial. Spine (Phila Pa 1976) 34(19):2001–2007CrossRefGoogle Scholar
  7. 7.
    Cho SK, Riew KD (2013) Adjacent segment disease following cervical spine surgery. J Am Acad Orthop Surg 21(1):3–11CrossRefGoogle Scholar
  8. 8.
    Kelly MP, Mok JM, Frisch RF, Tay BK (2011) Adjacent segment motion after anterior cervical discectomy and fusion versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial. Spine (Phila Pa 1976) 36(15):1171–1179CrossRefGoogle Scholar
  9. 9.
    Xia XP, Chen HL, Cheng HB (2013) Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976) 38(7):597–608CrossRefGoogle Scholar
  10. 10.
    Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81(4):519–528CrossRefGoogle Scholar
  11. 11.
    Boos N, Rieder R, Schade V, Spratt KF, Semmer N, Aebi M (1995) 1995 Volvo award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine (Phila Pa 1976) 20(24):2613–2625CrossRefGoogle Scholar
  12. 12.
    Borenstein DG, O’Mara JW Jr, Boden SD, Lauerman WC, Jacobson A, Platenberg C, Schellinger D, Wiesel SW (2001) The value of magnetic resonance imaging of the lumbar spine to predict low-back pain in asymptomatic subjects : a seven-year follow-up study. J Bone Joint Surg Am 83-A(9):1306–1311CrossRefGoogle Scholar
  13. 13.
    Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331(2):69–73CrossRefGoogle Scholar
  14. 14.
    Oh CH, Yoon SH (2017) Whole spine disc degeneration survey according to the ages and sex using Pfirrmann disc degeneration grades. Korean J Spine 14(4):148–154CrossRefGoogle Scholar
  15. 15.
    Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72(3):403–408CrossRefGoogle Scholar
  16. 16.
    Bydon M, Macki M, De la Garza-Ramos R, McGovern K, Sciubba DM, Wolinsky JP, Witham TF, Gokaslan ZL, Bydon A (2016) Incidence of adjacent segment disease requiring reoperation after lumbar laminectomy without fusion: a study of 398 patients. Neurosurgery 78(2):192–199CrossRefGoogle Scholar
  17. 17.
    Bydon M, Xu R, Santiago-Dieppa D, Macki M, Sciubba DM, Wolinsky JP, Bydon A, Gokaslan ZL, Witham TF (2014) Adjacent-segment disease in 511 cases of posterolateral instrumented lumbar arthrodesis: floating fusion versus distal construct including the sacrum. J Neurosurg Spine 20(4):380–386CrossRefGoogle Scholar
  18. 18.
    Chosa E, Goto K, Totoribe K, Tajima N (2004) Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method. J Spinal Disord Tech 17(2):134–139CrossRefGoogle Scholar
  19. 19.
    Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, McAfee PC (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine (Phila Pa 1976) 22(22):2655–2663CrossRefGoogle Scholar
  20. 20.
    Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976) 20(5):526–531CrossRefGoogle Scholar
  21. 21.
    Lawrence BD, Wang J, Arnold PM, Hermsmeyer J, Norvell DC, Brodke DS (2012) Predicting the risk of adjacent segment pathology after lumbar fusion: a systematic review. Spine (Phila Pa 1976) 37(22 Suppl):S123–S132CrossRefGoogle Scholar
  22. 22.
    Omair A, Mannion AF, Holden M, Leivseth G, Fairbank J, Hagg O, Fritzell P, Brox JI (2016) Age and pro-inflammatory gene polymorphisms influence adjacent segment disc degeneration more than fusion does in patients treated for chronic low back pain. Eur Spine J 25(1):2–13CrossRefGoogle Scholar
  23. 23.
    Kim JY, Ryu DS, Paik HK, Ahn SS, Kang MS, Kim KH, Park JY, Chin DK, Kim KS, Cho YE, Kuh SU (2016) Paraspinal muscle, facet joint, and disc problems: risk factors for adjacent segment degeneration after lumbar fusion. Spine J 16(7):867–875CrossRefGoogle Scholar
  24. 24.
    Lee CS, Hwang CJ, Lee SW, Ahn YJ, Kim YT, Lee DH, Lee MY (2009) Risk factors for adjacent segment disease after lumbar fusion. Eur Spine J 18(11):1637–1643CrossRefGoogle Scholar
  25. 25.
    Yugue I, Okada S, Masuda M, Ueta T, Maeda T, Shiba K (2016) Risk factors for adjacent segment pathology requiring additional surgery after single-level spinal fusion: impact of pre-existing spinal stenosis demonstrated by preoperative myelography. Eur Spine J 25(5):1542–1549CrossRefGoogle Scholar
  26. 26.
    Miyagi M, Ikeda O, Ohtori S, Tsuneizumi Y, Someya Y, Shibayama M, Ogawa Y, Inoue G, Orita S, Eguchi Y, Kamoda H, Arai G, Ishikawa T, Aoki Y, Toyone T, Ooi T, Takahashi K (2013) Additional decompression at adjacent segments leads to adjacent segment degeneration after PLIF. Eur Spine J 22(8):1877–1883CrossRefGoogle Scholar
  27. 27.
    Radcliff KE, Kepler CK, Jakoi A, Sidhu GS, Rihn J, Vaccaro AR, Albert TJ, Hilibrand AS (2013) Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J 13(10):1339–1349CrossRefGoogle Scholar
  28. 28.
    Kaito T, Hosono N, Mukai Y, Makino T, Fuji T, Yonenobu K (2010) Induction of early degeneration of the adjacent segment after posterior lumbar interbody fusion by excessive distraction of lumbar disc space. J Neurosurg Spine 12(6):671–679CrossRefGoogle Scholar
  29. 29.
    Djurasovic MO, Carreon LY, Glassman SD, Dimar JR 2nd, Puno RM, Johnson JR (2008) Sagittal alignment as a risk factor for adjacent level degeneration: a case-control study. Orthopedics 31(6):546CrossRefGoogle Scholar
  30. 30.
    Nagata H, Schendel MJ, Transfeldt EE, Lewis JL (1993) The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. Spine (Phila Pa 1976) 18(16):2471–2479CrossRefGoogle Scholar
  31. 31.
    Orita S, Yamagata M, Ikeda Y, Nakajima F, Aoki Y, Nakamura J, Takahashi K, Suzuki T, Ohtori S (2015) Retrospective exploration of risk factors for L5 radiculopathy following lumbar floating fusion surgery. J Orthop Surg Res 10:164CrossRefGoogle Scholar
  32. 32.
    Yamasaki K, Hoshino M, Omori K, Igarashi H, Nemoto Y, Tsuruta T, Matsumoto K, Iriuchishima T, Ajiro Y, Matsuzaki H (2017) Risk factors of adjacent segment disease after transforaminal inter-body fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 42(2):E86–E92CrossRefGoogle Scholar
  33. 33.
    Di Martino A, Quattrocchi CC, Scarciolla L, Papapietro N, Beomonte Zobel B, Denaro V (2014) Estimating the risk for symptomatic adjacent segment degeneration after lumbar fusion: analysis from a cohort of patients undergoing revision surgery. Eur Spine J 23(Suppl 6):693–698CrossRefGoogle Scholar
  34. 34.
    Zhou Z, Tian FM, Wang P, Gou Y, Zhang H, Song HP, Wang WY, Zhang L (2015) Alendronate prevents intervertebral disc degeneration adjacent to a lumbar fusion in ovariectomized rats. Spine (Phila Pa 1976) 40(20):E1073–E1083CrossRefGoogle Scholar
  35. 35.
    Luo Y, Li SY, Tian FM, Song HP, Zhang YZ, Zhang L (2018) Effects of human parathyroid hormone 1-34 on bone loss and lumbar intervertebral disc degeneration in ovariectomized rats. Int Orthop 42(5):1183–1190CrossRefGoogle Scholar
  36. 36.
    Boden SD, McCowin PR, Davis DO, Dina TS, Mark AS, Wiesel S (1990) Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72(8):1178–1184CrossRefGoogle Scholar
  37. 37.
    Kretzer RM, Hsu W, Hu N, Umekoji H, Jallo GI, McAfee PC, Tortolani PJ, Cunningham BW (2012) Adjacent-level range of motion and intradiscal pressure after posterior cervical decompression and fixation: an in vitro human cadaveric model. Spine (Phila Pa 1976) 37(13):E778–E785CrossRefGoogle Scholar
  38. 38.
    Maiman DJ, Kumaresan S, Yoganandan N, Pintar FA (1999) Biomechanical effect of anterior cervical spine fusion on adjacent segments. Biomed Mater Eng 9(1):27–38Google Scholar
  39. 39.
    Chang UK, Kim DH, Lee MC, Willenberg R, Kim SH, Lim J (2007) Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine 7(1):33–39CrossRefGoogle Scholar
  40. 40.
    Matsumoto M, Okada E, Ichihara D, Watanabe K, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Iwanami A, Ikegami T, Takahata T, Hashimoto T (2010) Anterior cervical decompression and fusion accelerates adjacent segment degeneration: comparison with asymptomatic volunteers in a ten-year magnetic resonance imaging follow-up study. Spine (Phila Pa 1976) 35(1):36–43CrossRefGoogle Scholar
  41. 41.
    Lawrence BD, Hilibrand AS, Brodt ED, Dettori JR, Brodke DS (2012) Predicting the risk of adjacent segment pathology in the cervical spine: a systematic review. Spine (Phila Pa 1976) 37(22 Suppl):S52–S64CrossRefGoogle Scholar
  42. 42.
    Ikenaga M, Shikata J, Tanaka C (2006) Long-term results over 10 years of anterior corpectomy and fusion for multilevel cervical myelopathy. Spine (Phila Pa 1976) 31(14):1568–1574 discussion 1575CrossRefGoogle Scholar
  43. 43.
    Yang P, Li Y, Li J, Shen Y (2017) Impact of T1 slope on surgical and adjacent segment degeneration after Bryan cervical disc arthroplasty. Ther Clin Risk Manag 13:1119–1125CrossRefGoogle Scholar
  44. 44.
    Nassr A, Lee JY, Bashir RS, Rihn JA, Eck JC, Kang JD, Lim MR (2009) Does incorrect level needle localization during anterior cervical discectomy and fusion lead to accelerated disc degeneration? Spine (Phila Pa 1976) 34(2):189–192CrossRefGoogle Scholar
  45. 45.
    Park JB, Cho YS, Riew KD (2005) Development of adjacent-level ossification in patients with an anterior cervical plate. J Bone Joint Surg Am 87(3):558–563CrossRefGoogle Scholar
  46. 46.
    Wu X, Qi Y, Tan M, Yi P, Yang F, Tang X, Hao Q (2018) Incidence and risk factors for adjacent segment degeneration following occipitoaxial fusion for atlantoaxial instability in non-rheumatoid arthritis. Arch Orthop Trauma Surg 138(7):921–927CrossRefGoogle Scholar
  47. 47.
    Liu H, Wu W, Li Y, Liu J, Yang K, Chen Y (2013) Protective effects of preserving the posterior complex on the development of adjacent-segment degeneration after lumbar fusion: clinical article. J Neurosurg Spine 19(2):201–206CrossRefGoogle Scholar
  48. 48.
    Imagama S, Kawakami N, Matsubara Y, Tsuji T, Ohara T, Katayama Y, Ishiguro N, Kanemura T (2016) Radiographic adjacent segment degeneration at 5 years after L4/5 posterior lumbar interbody fusion with pedicle screw instrumentation: evaluation by computed tomography and annual screening with magnetic resonance imaging. Clin Spine Surg 29(9):E442–E451CrossRefGoogle Scholar
  49. 49.
    Makino T, Honda H, Fujiwara H, Yoshikawa H, Yonenobu K, Kaito T (2018) Low incidence of adjacent segment disease after posterior lumbar interbody fusion with minimum disc distraction: a preliminary report. Medicine (Baltimore) 97(2):e9631CrossRefGoogle Scholar
  50. 50.
    Zhou Z, Tian FM, Gou Y, Wang P, Zhang H, Song HP, Shen Y, Zhang YZ, Zhang L (2016) Enhancement of lumbar fusion and alleviation of adjacent segment disc degeneration by intermittent PTH(1-34) in ovariectomized rats. J Bone Miner Res 31(4):828–838CrossRefGoogle Scholar
  51. 51.
    Pan A, Hai Y, Yang J, Zhou L, Chen X, Guo H (2016) Adjacent segment degeneration after lumbar spinal fusion compared with motion-preservation procedures: a meta-analysis. Eur Spine J 25(5):1522–1532CrossRefGoogle Scholar
  52. 52.
    Basques BA, Louie PK, Mormol J, Khan JM, Movassaghi K, Paul JC, Varthi A, Goldberg EJ, An HS (2018) Multi- versus single-level anterior cervical discectomy and fusion: comparing sagittal alignment, early adjacent segment degeneration, and clinical outcomes. Eur Spine J 27(11):2745–2753Google Scholar
  53. 53.
    Dong L, Wang D, Chen X, Liu T, Xu Z, Tan M, Hao D (2018) A comprehensive meta-analysis of the adjacent segment parameters in cervical disk arthroplasty versus anterior cervical discectomy and fusion. Clin Spine Surg 31(4):162–173CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of Orthopaedic SurgeryTakeda General HospitalAizu-WakamatsuJapan

Personalised recommendations