International Orthopaedics

, Volume 43, Issue 5, pp 1061–1070 | Cite as

One-stage surgery for adult chronic osteomyelitis: concomitant use of antibiotic-loaded calcium sulphate and bone marrow aspirate

  • Ahmed Abdel BadieEmail author
  • Mohamed S. Arafa
Original Paper



To report our experience with one-stage treatment of chronic osteomyelitis using a prospective protocol involving the concomitant use of the antibiotic-loaded calcium sulphate pellets with addition of bone marrow aspirate after bony debridement.

Patients and methods

A total of 30 patients with the mean age of 26.2 years were treated according to a protocol that included (1) surgical debridement of bone and infected tissues, (2) local antibiotic therapy including vancomycin and garamycin loaded on calcium sulphate space filling biodegradable pellets, (3) bone marrow aspirate added to the biocomposite, (4) primary closure with external fixation (when needed) and (5) intravenous antibiotics according to culture and sensitivity results.


After a minimum of one year follow-up, infection was eradicated in 23 (76.7%) patients, the average rate of filling of the bony defect was 70.47%, complete filling of defect in 15 patients (50%) and pathological fracture in one patient.


The technique proved safety and efficacy in eradicating the infection and bony healing of the defects after debridement. Simple bone marrow aspiration is cheap, reproducible, safe and not exhausting the scanty autograft resources.


Osteomyelitis Calcium sulphate Stimulan Rapid Cure Biodegradable antibiotic carrier Bone marrow aspirate Bone tissue engineering 



None of the authors received financial support for this study.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Klenerman L (2007) A history of osteomyelitis from the journal of bone and joint surgery: 1948 to 2006. J Bone Joint Surg Br 89(5):667–670CrossRefGoogle Scholar
  2. 2.
    Norden C, Gillespie WJ, Nade S (1994) Infection in bones and joints. Blackwell, BostonGoogle Scholar
  3. 3.
    Mader JT, Wang J, Calhoun JH (2001) Antibiotic therapy for musculoskeletal infections. J Bone Joint Surg Am 83(12):1877–1890CrossRefGoogle Scholar
  4. 4.
    Anagnostakos K, Schröder K (2012) Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: a systematic review of the literature. Int J Biomater 2012:538061CrossRefGoogle Scholar
  5. 5.
    Hashmi MA, Norman P, Saleh M (2004) The management of chronic osteomyelitis using the Lautenbach method. J Bone Joint Surg Br 86(2):269–275CrossRefGoogle Scholar
  6. 6.
    McPherson E, Dipane M, Sherif S (2013) Dissolvable antibiotic beads in treatment of periprosthetic joint infection and revision arthroplasty-the use of synthetic pure calcium sulfate (Stimulan®) impregnated with Vancomycin & Tobramycin. Reconstructive Review 3(1):32–43Google Scholar
  7. 7.
    Amin TJ, Lamping JW, Hendricks KJ, McIff TE (2012) Increasing the elution of vancomycin from high-dose antibiotic-loaded bone cement: a novel preparation technique. J Bone Joint Surg Am 94(21):1946–1951CrossRefGoogle Scholar
  8. 8.
    Hill JO, Klenerman L, Trustey SH, Blowers R (1977) Diffusion of antibiotics from acrylic bone-cement in vitro. J Bone Joint Surg Br 59(2):197–199CrossRefGoogle Scholar
  9. 9.
    Ferguson J, Diefenbeck M, McNally M (2017) Ceramic biocomposites as biodegradable antibiotic carriers in the treatment of bone infections. J Bone Jt Infect 2(1):38–51CrossRefGoogle Scholar
  10. 10.
    McKee MD, Li-Bland EA, Wild LM, Schemitsch EH (2010) A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma 24(8):483–490CrossRefGoogle Scholar
  11. 11.
    Cierny G, Mader JT (1984) Adult chronic osteomyelitis. Orthopedics 7(10):1557Google Scholar
  12. 12.
    Gitelis S, Brebach GT (2002) The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg 10(1):53–60CrossRefGoogle Scholar
  13. 13.
    Humm G, Noor S, Bridgeman P, David M, Bose D (2014) Adjuvant treatment of chronic osteomyelitis of the tibia following exogenous trauma using OSTEOSET®-T: a review of 21 patients in a regional trauma centre. Strategies Trauma Limb Reconstr 9(3):157–161CrossRefGoogle Scholar
  14. 14.
    Fillingham Y, Jacobs J (2016) Bone grafts and their substitutes. Bone Joint J 98(1 Supple A):6–9CrossRefGoogle Scholar
  15. 15.
    Roberts TT, Rosenbaum AJ (2012) Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 8(4):114–124CrossRefGoogle Scholar
  16. 16.
    Ochsner PE, Borens O, Bodler PM (2014) Infections of the musculoskeletal system: basic principles, prevention, diagnosis and treatment. Swiss orthopaedics in-house-publisherGoogle Scholar
  17. 17.
    Walenkamp GH, Vree TB (1986) Gentamicin-PMMA beads. Pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res 205:171–183Google Scholar
  18. 18.
    Kanellakopoulou K, Galanopoulos I, Soranoglou V, Tsaganos T, Tziortzioti V, Maris I, Papalois A, Giamarellou H, Giamarellos-Bourboulis EJ (2009) Treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with a synthetic carrier of calcium sulphate (Stimulan®) releasing moxifloxacin. Int J Antimicrob Agents 33(4):354–359CrossRefGoogle Scholar
  19. 19.
    Panagopoulos P, Tsaganos T, Plachouras D, Carrer DP, Papadopoulos A, Giamarellou H, Kanellakopoulou K (2008) In vitro elution of moxifloxacin and fusidic acid by a synthetic crystallic semihydrate form of calcium sulphate (Stimulan™). Int J Antimicrob Agents 32(6):485–487CrossRefGoogle Scholar
  20. 20.
    Agarwal S, Healey B (2014) The use of antibiotic impregnated absorbable calcium sulphate beads in management of infected joint replacement prostheses. Journal of Arthroscopy and Joint Surgery 1(2):72–75CrossRefGoogle Scholar
  21. 21.
    Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, McNally MA (2014) The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J 96(6):829–836CrossRefGoogle Scholar
  22. 22.
    Nelson CL, McLaren SG, Skinner RA, Smeltzer MS, Thomas JR, Olsen KM (2002) The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulfate tobramycin pellets. J Orthop Res 20(4):643–647CrossRefGoogle Scholar
  23. 23.
    Chang W, Colangeli M, Colangeli S, Di Bella C, Gozzi E, Donati D (2007) Adult osteomyelitis: debridement versus debridement plus Osteoset T® pellets. Acta Orthop Belg 73(2):238–243Google Scholar
  24. 24.
    McKee MD, Wild LM, Schemitsch EH, Waddell JP (2002) The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J Orthop Trauma 16(9):622–627CrossRefGoogle Scholar
  25. 25.
    Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, Alt V (2005) Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 26(15):2677–2684CrossRefGoogle Scholar
  26. 26.
    Maier GS, Roth KE, Andereya S, Birnbaum K, Niedhart C, Lühmann M, Ohnsorge J, Maus U (2013) In vitro elution characteristics of gentamicin and vancomycin from synthetic bone graft substitutes. Open Orthop J 7:624–629CrossRefGoogle Scholar
  27. 27.
    Inzana JA, Schwarz EM, Kates SL, Awad HA (2016) Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 81:58–71CrossRefGoogle Scholar
  28. 28.
    Rousset M, Walle M, Cambou L, Mansour M, Samba A, Pereira B, Ghanem I, Canavese F (2018) Chronic infection and infected non-union of the long bones in paediatric patients: preliminary results of bone versus beta-tricalcium phosphate grafting after induced membrane formation. Int Orthop 42(2):385–393CrossRefGoogle Scholar
  29. 29.
    Sasaki G, Watanabe Y, Miyamoto W, Yasui Y, Morimoto S, Kawano H (2018) Induced membrane technique using beta-tricalcium phosphate for reconstruction of femoral and tibial segmental bone loss due to infection: technical tips and preliminary clinical results. Int Orthop 42(1):17–24CrossRefGoogle Scholar
  30. 30.
    Strocchi R, Orsini G, Iezzi G, Scarano A, Rubini C, Pecora G, Piattelli A (2002) Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits. J Oral Implantol 28(6):273–278CrossRefGoogle Scholar
  31. 31.
    Rosset P, Deschaseaux F, Layrolle P (2014) Cell therapy for bone repair. Orthop Traumatol Surg Res 100(1):S107–S112CrossRefGoogle Scholar
  32. 32.
    Chatterjea A, Meijer G, van Blitterswijk C, de Boer J (2010) Clinical application of human mesenchymal stromal cells for bone tissue engineering. Stem Cells Int 2010:215625CrossRefGoogle Scholar
  33. 33.
    Borkhuu B, Borowski A, Shah SA, Littleton AG, Dabney KW, Miller F (2008) Antibiotic-loaded allograft decreases the rate of acute deep wound infection after spinal fusion in cerebral palsy. Spine 33(21):2300–2304CrossRefGoogle Scholar
  34. 34.
    Buttaro MA, Pusso R, Piccaluga F (2005) Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty: two-stage revision results. J Bone Joint Surg Br 87(3):314–319CrossRefGoogle Scholar
  35. 35.
    Hernigou P, Dubory A, Homma Y, Flouzat Lachaniette CH, Chevallier N, Rouard H (2017) Single-stage treatment of infected tibial non-unions and osteomyelitis with bone marrow granulocytes precursors protecting bone graft. Int Orthop.
  36. 36.
    Chan YS, Ueng SW, Wang CJ, Lee SS, Chen CY, Shin CH (2000) Antibiotic-impregnated autogenic cancellous bone grafting is an effective and safe method for the management of small infected tibial defects: a comparison study. J Trauma Acute Care Surg 48(2):246–255CrossRefGoogle Scholar
  37. 37.
    Chen CE, Ko JY, Pan CC (2005) Results of vancomycin-impregnated cancellous bone grafting for infected tibial nonunion. Arch Ortho Trauma Surg 125(6):369–375CrossRefGoogle Scholar
  38. 38.
    Frohlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3(4):254–264CrossRefGoogle Scholar
  39. 39.
    Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT (2001) The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res 382:42–50CrossRefGoogle Scholar
  40. 40.
    Coetzee AS (1980) Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol 106(7):405–409CrossRefGoogle Scholar
  41. 41.
    Schlickewei CW, Yarar S, Rueger JM (2014) Eluting antibiotic bone graft substitutes for the treatment of osteomyelitis in long bones. A review: evidence for their use. Orthop Res Rev 6:71–79Google Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Orthopedic SurgerySuez Canal University HospitalIsmailiaEgypt
  2. 2.Department of Orthopedic SurgeryFayoum University HospitalAl FayoumEgypt

Personalised recommendations