Advertisement

International Orthopaedics

, Volume 42, Issue 12, pp 2915–2923 | Cite as

Fixation augmentation using calcium-phosphate bone substitute improves outcomes of complex tibial plateau fractures. A matched, cohort study

  • Matthieu Ollivier
  • Yassine Bulaïd
  • Christophe Jacquet
  • Sebastien Pesenti
  • Jean-noel Argenson
  • Sebastien Parratte
Original Paper
  • 398 Downloads

Abstract

Introduction

Injectable cements have been developed to improve fixation’s stability and thus obtain early return to adequate joint function. We aimed to compare post-operative radiographic and clinical outcomes of patients suffering from a complex tibial plateau fracture (TPF) fixed with calcium-phosphate bone substitutes (CPBS) augmentation to a matched group of patients with identical fracture pattern, treated with the same fixation’s type, but augmented with bone grafting.

Methods

After local ethic committee approval, we retrospectively identified in a prospectively collected database, patients with complex comminuted metaphyseal and epiphysial bicondylar TPF (Schatzker type VI) admitted in our emergency department between January 2011 and December 2013. From those, 23 patients (14 males, 9 females) were treated with CPBS (Quickset-CP®, Graftys, Aix-en-Provence, France) fixation augmentation. Patients’ mean age were 44.4 years. We then created a control group using a 1:1 matching process on gender, age, fracture pattern, and method of fixation. Patients were evaluated prospectively at 3, 6, and then every six  months using radiographic (AP/ML views) and clinical criteria (knee osteoarthritis outcomes score (KOOS) and EuroQOL-5D).

Results

Articular step-off and variation of articular step-off were significantly lower in the CPBS groups (mean step-off 1.4 ± 1.9 (0.5–6.5 mm) and mean step-off Δ = 0.3 ± 0.4 (0.5–2.2 mm)) than in the control group (mean step-off 3.6 ± 2.1 (1–7.5 mm) and mean step-off Δ = 2.2 ± 2 (0.5–7 mm) p < 0.01). At last follow-up, patients of the control group presented a higher rate of step-off > 2 mm and step-off Δ > 2 mm (respectively, 56 and 35%) than patients of the CPBS group (26 and 9%). Odd ratio of, respectively, 3.6 (95% CI (1.08–12.7) and p = 0.03) and 5.6 (95% CI (1.04–30.1) and p = 0.03).At mean follow-up of 29 months, KOOS pain subscore was significantly better in patients of the CPBS group (85.3 ± 12.1) than in control patients (74.2 ± 10.4 and p = 0.03).

Conclusion

The present study demonstrates that calcium-phosphate bone substitute used as synthesis augmentation improves mid-term radiological outcomes of patients suffering from complex tibial plateau fracture. Series reporting outcomes from a larger number of patients and longer follow-up must confirm clinical benefits and safety of this method.

Keywords

Tibial Plateau Fractures Augmentation Osteosynthesis Phosphocalcic cement Clinical outcomes CT-Scan 

Notes

Compliance with ethical standards

This article does not contain any studies with human participants performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Petersen W, Zantop T, Raschke M (2006) Fracture of the tibial head. Unfallchirurg 109:219–232; quiz 233-234.  https://doi.org/10.1007/s00113-006-1066-9 CrossRefGoogle Scholar
  2. 2.
    Manidakis N, Dosani A, Dimitriou R et al (2010) Tibial plateau fractures: functional outcome and incidence of osteoarthritis in 125 cases. Int Orthop 34:565–570.  https://doi.org/10.1007/s00264-009-0790-5 CrossRefGoogle Scholar
  3. 3.
    Dang AC, Kim HT (2009) Chondrocyte apoptosis after simulated intraarticular fracture: a comparison of histologic detection methods. Clin Orthop 467:1877–1884.  https://doi.org/10.1007/s11999-009-0829-3 CrossRefGoogle Scholar
  4. 4.
    Rademakers MV, Kerkhoffs GMMJ, Sierevelt IN et al (2007) Operative treatment of 109 tibial plateau fractures: five- to 27-year follow-up results. J Orthop Trauma 21:5–10.  https://doi.org/10.1097/BOT.0b013e31802c5b51 CrossRefGoogle Scholar
  5. 5.
    Hannouche D, Duparc F, Beaufils P (2006) The arterial vascularization of the lateral tibial condyle: anatomy and surgical applications. Surg Radiol Anat 28:38–45.  https://doi.org/10.1007/s00276-005-0044-1 CrossRefGoogle Scholar
  6. 6.
    Messina M, Herbert B, Mauffrey C (2013) The use of arthroscopy to assist reduction of depressed tibial plateau fractures. Curr Orthop Pract 24:160–164.  https://doi.org/10.1097/BCO.0b013e318286d227 CrossRefGoogle Scholar
  7. 7.
    Siegler J, Galissier B, Marcheix P-S et al (2011) Percutaneous fixation of tibial plateau fractures under arthroscopy: a medium term perspective. Orthop Traumatol Surg Res 97:44–50.  https://doi.org/10.1016/j.otsr.2010.08.005 CrossRefGoogle Scholar
  8. 8.
    Biggi F, Di Fabio S, D’Antimo C, Trevisani S (2010) Tibial plateau fractures: internal fixation with locking plates and the MIPO technique. Injury 41:1178–1182.  https://doi.org/10.1016/j.injury.2010.08.001 CrossRefGoogle Scholar
  9. 9.
    Young MJ, Barrack RL (1994) Complications of internal fixation of tibial plateau fractures. Orthop Rev 23:149–154Google Scholar
  10. 10.
    Basques BA, Webb ML, Bohl DD et al (2015) Adverse events, length of stay, and readmission after surgery for tibial plateau fractures. J Orthop Trauma 29:e121–e126.  https://doi.org/10.1097/BOT.0000000000000231 CrossRefGoogle Scholar
  11. 11.
    Chen X-Z, Liu C-G, Chen Y et al (2015) Arthroscopy-assisted surgery for tibial plateau fractures. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 31:143–153.  https://doi.org/10.1016/j.arthro.2014.06.005 CrossRefGoogle Scholar
  12. 12.
    Belanger M, Fadale P (1997) Compartment syndrome of the leg after arthroscopic examination of a tibial plateau fracture. Case report and review of the literature. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 13:646–651CrossRefGoogle Scholar
  13. 13.
    Dall’Oca C, Maluta T, Lavini F et al (2012) Tibial plateau fractures: compared outcomes between ARIF and ORIF. Strateg Trauma Limb Reconstr 7:163–175.  https://doi.org/10.1007/s11751-012-0148-1 CrossRefGoogle Scholar
  14. 14.
    Simpson D, Keating JF (2004) Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury 35:913–918.  https://doi.org/10.1016/S0020-1383(03)00109-8 CrossRefGoogle Scholar
  15. 15.
    Weigel DP, Marsh JL (2002) High-energy fractures of the tibial plateau. Knee function after longer follow-up. J Bone Joint Surg Am 84–A:1541–1551CrossRefGoogle Scholar
  16. 16.
    Lachiewicz PF, Funcik T (1990) Factors influencing the results of open reduction and internal fixation of tibial plateau fractures. Clin Orthop:210–215Google Scholar
  17. 17.
    Lefkoe TP, Walsh WR, Anastasatos J et al (1995) Remodeling of articular step-offs. Is osteoarthrosis dependent on defect size? Clin Orthop:253–265Google Scholar
  18. 18.
    Trenholm A, Landry S, McLaughlin K et al (2005) Comparative fixation of tibial plateau fractures using alpha-BSM, a calcium phosphate cement, versus cancellous bone graft. J Orthop Trauma 19:698–702CrossRefGoogle Scholar
  19. 19.
    Russell TA, Leighton RK, Alpha-BSM Tibial Plateau Fracture Study Group (2008) Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 90:2057–2061.  https://doi.org/10.2106/JBJS.G.01191 CrossRefGoogle Scholar
  20. 20.
    Bajammal SS, Zlowodzki M, Lelwica A et al (2008) The use of calcium phosphate bone cement in fracture treatment. A meta-analysis of randomized trials. J Bone Joint Surg Am 90:1186–1196.  https://doi.org/10.2106/JBJS.G.00241 CrossRefGoogle Scholar
  21. 21.
    Goff T, Kanakaris NK, Giannoudis PV (2013) Use of bone graft substitutes in the management of tibial plateau fractures. Injury 44(Suppl 1):S86–S94.  https://doi.org/10.1016/S0020-1383(13)70019-6 CrossRefGoogle Scholar
  22. 22.
    Egol KA, Tejwani NC, Capla EL et al (2005) Staged management of high-energy proximal tibia fractures (OTA types 41): the results of a prospective, standardized protocol. J Orthop Trauma 19:448–455 discussion 456CrossRefGoogle Scholar
  23. 23.
    Freeman MAR, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38:197–208.  https://doi.org/10.1016/j.jbiomech.2004.02.006 CrossRefGoogle Scholar
  24. 24.
    Heiney JP, Redfern RE, Wanjiku S (2013) Subjective and novel objective radiographic evaluation of inflatable bone tamp treatment of articular calcaneus, tibial plateau, tibial pilon and distal radius fractures. Injury 44:1127–1134.  https://doi.org/10.1016/j.injury.2013.03.020 CrossRefGoogle Scholar
  25. 25.
    Ornetti P, Parratte S, Gossec L et al (2008) Cross-cultural adaptation and validation of the French version of the knee injury and osteoarthritis outcome score (KOOS) in knee osteoarthritis patients. Osteoarthr Cartil 16:423–428.  https://doi.org/10.1016/j.joca.2007.08.007 CrossRefGoogle Scholar
  26. 26.
    Giannoudis PV, Harwood PJ, Kontakis G et al (2009) Long-term quality of life in trauma patients following the full spectrum of tibial injury (fasciotomy, closed fracture, grade IIIB/IIIC open fracture and amputation). Injury 40:213–219.  https://doi.org/10.1016/j.injury.2008.05.024 CrossRefGoogle Scholar
  27. 27.
    Welch RD, Zhang H, Bronson DG (2003) Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J Bone Joint Surg Am 85–A:222–231CrossRefGoogle Scholar
  28. 28.
    Jiang R, Luo C-F, Wang M-C et al (2008) A comparative study of less invasive stabilization system (LISS) fixation and two-incision double plating for the treatment of bicondylar tibial plateau fractures. Knee 15:139–143.  https://doi.org/10.1016/j.knee.2007.12.001 CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  • Matthieu Ollivier
    • 1
    • 2
    • 3
  • Yassine Bulaïd
    • 1
    • 2
    • 3
  • Christophe Jacquet
    • 1
    • 2
    • 3
  • Sebastien Pesenti
    • 1
    • 2
    • 3
  • Jean-noel Argenson
    • 1
    • 2
    • 3
  • Sebastien Parratte
    • 1
    • 2
    • 3
  1. 1.Investigation performed at St. Marguerite HospitalAix-Marseille UniversityMarseilleFrance
  2. 2.APHM, Institut du mouvement et de l’appareil locomoteur, Department of Orthopaedic SurgerySainte-Marguerite HospitalMarseilleFrance
  3. 3.CNRS, ISM UMR 7287Aix-Marseille UniversityMarseilleFrance

Personalised recommendations