Total knee arthroplasties from the origin to navigation: history, rationale, indications

  • Dominique Saragaglia
  • Brice Rubens-Duval
  • Julia Gaillot
  • Gabriel Lateur
  • Régis Pailhé
Review Article
  • 55 Downloads

Abstract

Since the early 1970s, total knee arthroplasties have undergone many changes in both their design and their surgical instrumentation. It soon became apparent that to improve prosthesis durability, it was essential to have instruments which allowed them to be fitted reliably and consistently. Despite increasingly sophisticated surgical techniques, preoperative objectives were only met in 75% of cases, which led to the development, in the early 1990s, in Grenoble (France), of computer-assisted orthopaedic surgery for knee prosthesis implantation. In the early 2000s, many navigation systems emerged, some including pre-operative imagery (“CT-based”), others using intra-operative imagery (“fluoroscopy-based”), and yet others with no imagery at all (“imageless”), which soon became the navigation “gold standard”. They use an optoelectronic tracker, markers which are fixed solidly to the bones and instruments, and a navigation workstation (computer), with a control system (e.g. pedal). Despite numerous studies demonstrating the benefit of computer navigation in meeting preoperative objectives, such systems have not yet achieved the success they warrant, for various reasons we will be covering in this article. If the latest navigation systems prove to be as effective as the older systems, they should give this type of technology a well-deserved boost.

Keywords

Knee Osteoarthritis Arthroplasty Navigation Computer 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

References

  1. 1.
    Aubriot JH (1989) historique et évolution des prothèses totales du genou. Cahier d’enseignement de la SOFCOT n°35. Expans Sci Fr Paris 189:4Google Scholar
  2. 2.
    Aubriot JH, Deburge A, Kenesi CL, Schramm P (1973) La prothèse Guépar. Acta Orthop Belg 39:257–279PubMedGoogle Scholar
  3. 3.
    Trillat A, Dejour H, Bousquet G, Grammont P (1973) La prothèse rotatoire du genou. Rev Chir Orthop Reparatrice Appar Mot 59:513–522PubMedGoogle Scholar
  4. 4.
    Gunston FH (1971) Polycentric knee arthroplasty. J Bone Joint Surg Br 53:272–277CrossRefPubMedGoogle Scholar
  5. 5.
    Marmor L (1973) The modular knee. Clin Orthop Relat Res 94:242–248CrossRefGoogle Scholar
  6. 6.
    Goodfellow J, O’Connor J (1978) The mechanics of the knee and prosthesis design. J Bone Joint Surg Br 60:358–369CrossRefPubMedGoogle Scholar
  7. 7.
    Cloutier JM (1983) Results of total knee arthroplasty with a non-constrained prosthesis. J Bone Joint Surg Am 65:906–919CrossRefPubMedGoogle Scholar
  8. 8.
    Insall J, Lachiewicz PF, Burnstein AH (1982) The posterior stabilized condylar prosthesis: a modification of the total condylar design. Two to four-year clinical experience. J Bone Joint Surg Am 64:1317–1323CrossRefPubMedGoogle Scholar
  9. 9.
    Buechel FF, Pappas MJ (1986) The New Jersey Low-Contact-Stress Knee Replacement System: biomechanical rationale and review of the first 123 cemented cases. Arch Orthop Trauma Surg 105:197–204CrossRefPubMedGoogle Scholar
  10. 10.
    Argenson JN, Parratte S, Ashour A, Saintmard B, Aubaniac JM (2012) The outcome of rotating-platform total knee arthroplasty with cement at a minimum of ten years of follow-up. J Bone Joint Surg Am 94:638–644CrossRefPubMedGoogle Scholar
  11. 11.
    Bercovy M, Langlois J, Beldame J, Lefebvre B (2015) Functional results of the ROCC® Mobile Bearing Knee. 602 cases at midterm follow-up (5 to 14 years). J Arthroplast 30:973–979.  https://doi.org/10.1016/j.arth.2015.01.003 CrossRefGoogle Scholar
  12. 12.
    Czekaj J, Fary C, Gaillard T, Lustig S (2017) Does low-constraint mobile bearing knee prosthesis give satisfactory results for severe coronal deformities? A five to twelve year follow up study. Int Orthop 41:1369–1377.  https://doi.org/10.1007/s00264-017-3452-z CrossRefPubMedGoogle Scholar
  13. 13.
    Saragaglia D, Sigwalt L, Gaillot J, Morin V, Rubens-Duval B, Pailhé R (2017) Results with eight and a half years average follow-up on two hundred and eight e-Motion FP® knee prostheses, fitted using computer navigation for knee osteoarthritis in patients with over ten degrees genu varum. Int Orthop.  https://doi.org/10.1007/s00264-017-3618-8
  14. 14.
    Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38:277–284CrossRefPubMedGoogle Scholar
  15. 15.
    Mazzucchelli L, Deledda D, Rosso F, Ratto N, Bruzzone M, Bonasia DE, Rossi R (2016) Cruciate retaining and cruciate substituting ultra-congruent insert. Ann Transl Med 4:2.  https://doi.org/10.3978/j.issn.2305-5839.2015.12.52 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Thomsen MG, Husted H, Bencke J, Curtis D, Holm G, Troelsen A (2012) Do we need a gender-specific total knee replacement? A randomised controlled trial comparing a high-flex and a gender-specific posterior design. J Bone Joint Surg Br 94:787–792.  https://doi.org/10.1302/0301-620X.94B6.28781 CrossRefPubMedGoogle Scholar
  17. 17.
    Laskin RS (1991) Total knee replacement. Springer-Verlag, London, p 268CrossRefGoogle Scholar
  18. 18.
    Bargren JH, Blaha JD, Freeman MAR (1983) Alignment in total knee arthroplasty: correlated biomechanical and clinical observations. Clin Orthop 173:178–183Google Scholar
  19. 19.
    Ecker ML, Lotke PA, Windor RE, Cello JP (1987) Long term results after total condylar knee arthroplasty. Clin Orthop 216:151–158Google Scholar
  20. 20.
    Hood RW, Vanni M, Insall JN (1981) The correction of knee alignment in 225 consecutive total condylar knee replacements. Clin Orthop 160:94–105Google Scholar
  21. 21.
    Hsu H, Garg A, Walker PS, Spector M, Ewald FC (1989) Effect of knee component alignment on tibial load distribution with clinical correlation. Clin Orthop 248:135–144Google Scholar
  22. 22.
    Jeffrey RS, Morris RW, Benham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714CrossRefGoogle Scholar
  23. 23.
    Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am 59:77–79CrossRefPubMedGoogle Scholar
  24. 24.
    Ranawat CS, Boachie-Adjei O (1988) Survivorship analysis and results of total condylar knee arthroplasty. Clin Orthop 226:6–13Google Scholar
  25. 25.
    Ritter MA, Faris PM, Keating E, Meding JB (1994) Postoperative alignment of total knee replacement: its effects on survival. Clin Orthop 299:153–157Google Scholar
  26. 26.
    Tew M, Waugh W (1985) Tibial-femoral alignment and the results of knee replacement. J Bone Joint Surg Br 67:551–556CrossRefPubMedGoogle Scholar
  27. 27.
    Picard F, Leitner F, Saragaglia D, Cinquin P (1997) Mise en place d’une prothèse totale du genou assistée par ordinateur: A propos de 7 implantations sur cadavre. Rev Chir Orthop Reparatrice Appar Mot 83(Suppl. II):31Google Scholar
  28. 28.
    Leitner F, Picard F, Minfelde R, Schultz HJ, Cinquin P, Saragaglia D (1997) Computer-assisted knee surgical total replacement. In: lecture note in computer science: CURMed-MRCAS'97. Springer Verlag, Berlin-Heidelberg, pp 629–638Google Scholar
  29. 29.
    Saragaglia D, Picard F, Chaussard C, Montbarbon E, Leitner F, Cinquin P (2001) Mise en place des prothèses totale du genou assistée par ordinateur: comparaison avec la technique conventionnelle. A propos d’une étude prospective randomisée de 50 cas. Rev Chir Orthop Reparatrice Appar Mot 87:18–28PubMedGoogle Scholar
  30. 30.
    Saragaglia D, Roberts J (2005) Navigated osteotomies around the knee in 170 patients with osteoarthritis secondary to genu varum. Orthopaedics 28(Suppl n° 10):S1269–S1274Google Scholar
  31. 31.
    Saragaglia D, Mercier N, Colle PE (2010) Computer-assisted osteotomies for genu varum deformity: which osteotomy for which varus? Int Orthop 34:185–190CrossRefPubMedGoogle Scholar
  32. 32.
    Saragaglia D, Blaysat M, Mercier N, Grimaldi M (2012) Results of forty-two computer-assisted double level osteotomies for severe genu varum deformity. Int Orthop 36:999–1003.  https://doi.org/10.1007/s00264-011-1363-y CrossRefPubMedGoogle Scholar
  33. 33.
    Saragaglia D, Picard F, Refaie R (2012) Navigation of the tibial plateau alone appears to be sufficient in computer-assisted unicompartmental knee arthroplasty. Int Orthop 36:2479–2483.  https://doi.org/10.1007/s00264-012-1679-2 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saragaglia D, Marques Da Silva B, Dijoux P, Cognault J, Gaillot J, Pailhé R (2017) Computerised navigation of unicondylar knee prostheses: from primary implantation to revision to total knee arthroplasty. Int Orthop 41:293–299.  https://doi.org/10.1007/s00264-016-3293-1 CrossRefPubMedGoogle Scholar
  35. 35.
    Nizard RS, Porcher R, Ravaud P, Vangaver E, Hannouche D, Bizot P et al (2004) Use of the Cusum technique for evaluation of a CT-based navigation system for total knee replacement. Clin Orthop Relat Res 425:180–188CrossRefGoogle Scholar
  36. 36.
    Weise M, Schmidt K, Willburger RE (2004) Clinical experience with CT-based VectorVision system. In: Stiehl JB, Konermann WH, Haaker RG (eds) Navigation and robotics in total joint and spine surgery. Springer-Verlag, Berlin, pp 301–303CrossRefGoogle Scholar
  37. 37.
    Sparmann M, Wolke B (2004) Knee endoprosthesis navigation with the Stryker system. In: Stiehl JB, Konermann WH, Haaker RG (eds) Navigation and robotics in total joint and spine surgery. Springer-Verlag, Berlin, pp 319–323CrossRefGoogle Scholar
  38. 38.
    Perlick L, Bäthis H, Lüring C, Tingart M, Grifka J (2004) CT-based and CT-free navigation with the BrainLAB VectorVision system in total knee arthroplasty. In: Stiehl JB, Konermann WH, Haaker RG (eds) Navigation and robotics in total joint and spine surgery. Springer-Verlag, Berlin, pp 304–310CrossRefGoogle Scholar
  39. 39.
    Stindel E, Briard JL, Merloz P, Plaweski S, Dubrana F, Lefevre C et al (2002) Bone morphing: 3D morphological data for total knee arthroplasty. Comp Aid Surg 7:156–168CrossRefGoogle Scholar
  40. 40.
    Hagena FW, Kettrukat M, Christ RM, Hackbart M (2004) Fluoroscopy-based navigation in genesis II total knee arthroplasty with Medtronic « Viking » system. In: Stiehl JB, Konermann WH, Haaker RG (eds) Navigation and robotics in total joint and spine surgery. Springer-Verlag, Berlin, pp 330–335CrossRefGoogle Scholar
  41. 41.
    Victor J, Hoste D (2004) Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res 428:131–139CrossRefGoogle Scholar
  42. 42.
    Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplast 22(8):1097–1106CrossRefGoogle Scholar
  43. 43.
    Brin YS, Nikolaou VS, Joseph L, Zukor DJ, Antoniou J (2011) Imageless computer assisted versus conventional total knee replacement. A Bayesian meta-analysis of 23 comparative studies. Int Orthop 35(3):331–339CrossRefPubMedGoogle Scholar
  44. 44.
    Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc 20(7):1307–1322CrossRefPubMedGoogle Scholar
  45. 45.
    Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplast 27(6):1177–1182CrossRefGoogle Scholar
  46. 46.
    Lee DH, Park JH, Song DI, Padhy D, Jeong WK, Han SB (2010) Accuracy of soft tissue balancing in TKA: comparison between navigation-assisted gap balancing and conventional measured resection. Knee Surg Sports Traumatol Arthrosc 18(3):381–387CrossRefPubMedGoogle Scholar
  47. 47.
    Kim YH, Kim JS, Choi Y, Kwon OR (2009) Computer-assisted surgical navigation does not improve the alignment and orientation of the components in total knee arthroplasty. J Bone Joint Surg Am 91(1):14–19CrossRefPubMedGoogle Scholar
  48. 48.
    Burnett RSJ, Barrack RL (2013) Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res 471(1):264–276CrossRefPubMedGoogle Scholar
  49. 49.
    Rebal BA, Babatunde OM, Lee JH, Geller JA, Patrick DA, Macaulay W (2014) Imageless computer navigation in total knee arthroplasty provides superior short term functional outcomes: a meta-analysis. J Arthroplast 29(5):938–944CrossRefGoogle Scholar
  50. 50.
    De Steiger RN, Liu YL, Graves SE (2015) Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am 97(8):635–642CrossRefPubMedGoogle Scholar
  51. 51.
    Baumbach JA, Willburger R, Haaker R, Dittrich M, Kohler S (2016) 10 year survival of navigated versus conventional TKAs: a retrospective study. Orthopedics 39(3 Suppl):S72–S76.  https://doi.org/10.3928/01477447-20160509-21 CrossRefPubMedGoogle Scholar
  52. 52.
    Schnurr C, Güdden I, Eysel P, König DP (2012) Influence of computer navigation on TKA revision rates. Int Orthop 36(11):2255–2260.  https://doi.org/10.1007/s00264-012-1606-6 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Saragaglia D, Picard F (2004) Computer-assisted implantation of total knee endoprosthesis with no pre-operative imaging: the kinematic model. In: Stiehl JB, Konermann WH, Haaker RG (eds) Navigation and robotics in total joint and spine surgery. Springer-Verlag, Berlin, pp 226–233CrossRefGoogle Scholar
  54. 54.
    Thiengwittayaporn S, Fusakul Y, Kangkano N, Jarupongprapa C, Charoenphandhu N (2016) Hand-held navigation may improve accuracy in minimally invasive total knee arthroplasty: a prospective randomized controlled trial. Int Orthop 40(1):51–57.  https://doi.org/10.1007/s00264-015-2848-x CrossRefPubMedGoogle Scholar
  55. 55.
    Goh GS, Liow MH, Lim WS, Tay DK, Yeo SJ, Tan MH (2016) Accelerometer-based navigation is as accurate as optical computer navigation in restoring the joint line and mechanical axis after total knee arthroplasty: a prospective matched study. J Arthroplast 31(1):92–97.  https://doi.org/10.1016/j.arth.2015.06.048 CrossRefGoogle Scholar
  56. 56.
    Iorio R, Mazza D, Drogo P, Bolle G, Conteduca F, Redler A, Valeo L, Conteduca J, Ferretti A (2015) Clinical and radiographic outcomes of an accelerometer-based system for the tibial resection in total knee arthroplasty. Int Orthop 39(3):461–466.  https://doi.org/10.1007/s00264-014-2541-5 CrossRefPubMedGoogle Scholar
  57. 57.
    Koenen P, Schneider MM, Fröhlich M, Driessen A, Bouillon B, Bäthis H (2016) Reliable alignment in total knee arthroplasty by the use of an iPod-based navigation system. Adv Orthop 2016:2606453.  https://doi.org/10.1155/2016/2606453 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Maderbacher G, Schaumburger J, Keshmiri A, Barthel M, Springorum HR, Craiovan B, Grifka J, Baier C (2015) Pinless navigation in total knee arthroplasty: navigation reduced by the maximum? Int Orthop 39(3):455–460.  https://doi.org/10.1007/s00264-014-2529-1 CrossRefPubMedGoogle Scholar
  59. 59.
    Howell SM, Papadopoulos S, Kuznik K, Ghaly LR, Hull ML (2015) Does varus alignment adversely affect implant survival and function six years after kinematically aligned total knee arthroplasty? Int Orthop 39(11):2117–2124.  https://doi.org/10.1007/s00264-015-2743-5 CrossRefPubMedGoogle Scholar
  60. 60.
    Kalairajah Y, Cossey AJ, Verrall GM, Ludbrook G, Spriggins AJ (2006) Are systemic emboli reduced in computer-assisted knee surgery? A prospective, randomised, clinical trial. J Bone Joint Surg Br 88(2):198–202CrossRefPubMedGoogle Scholar
  61. 61.
    McConnell J, Dillon J, Kinninmonth A, Sarungi M, Picard F (2012) Blood loss following total knee replacement is reduced when using computer-assisted versus standard methods. Acta Orthop Belg 78(1):75–78PubMedGoogle Scholar
  62. 62.
    Jenny J-Y, Picard F (2017) Learning navigation—learning with navigation. A review. SICOT J 3:39.  https://doi.org/10.1051/sicotj/2017025 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Saragaglia D, Chaussard C, Rubens-Duval B (2006) Navigation as a predictor of soft tissue release during 90 cases of computer-assisted total knee arthroplasty. Orthopedics 29(10 Suppl):S137–S138PubMedGoogle Scholar
  64. 64.
    Mullaji A, Shetty GM (2009) Computer-assisted total knee arthroplasty for arthritis with extra-articular deformity. J Arthroplast 24(8):1164–1169CrossRefGoogle Scholar
  65. 65.
    Kim KK, Heo YM, Won YY, Lee WS (2011) Navigation-assisted total knee arthroplasty for the knee retaining femoral intramedullary nail, and distal femoral plate and screws. Clin Orthop Surg 3(1):77–80.  https://doi.org/10.4055/cios.2011.3.1.77 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tigani D, Masetti G, Sabbioni G, Ben Ayad R, Filanti M, Fosco M (2012) Computer-assisted surgery as indication of choice: total knee arthroplasty in case of retained hardware or extra-articular deformity. Int Orthop 36(7):1379–1385.  https://doi.org/10.1007/s00264-011-1476-3 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery and Sport TraumatologyGrenoble South Teaching HospitalÉchirollesFrance

Personalised recommendations