International Orthopaedics

, Volume 42, Issue 8, pp 1845–1851 | Cite as

Prospective comparative study of knee laxity with four different methods in anterior cruciate ligament tears

  • Jerome Murgier
  • Jean Sebastien Béranger
  • Philippe Boisrenoult
  • Camille Steltzlen
  • Nicolas PujolEmail author
Original Paper


Background and purpose

Anterior knee laxity can be evaluated using different devices, the most commonly used being the Telos®, KT1000®, Rolimeter®, and GNRB®. However, the laxity values obtained with these devices have never been compared to one another. As such, the outcomes of studies using these different knee laxity measurement devices may not be comparable. The primary purpose of this study was to determine the side-to-side laxity difference in patients with one ACL-injured knee, using each of these devices, and to compare the values obtained from each. We hypothesized that the measurements of laxity would vary depending on the device used.


This was a prospective study. All patients with an ACL injury, in which surgical reconstruction was planned, underwent pre-operative knee laxity measurements using four different devices. The concordance correlation coefficient (CCC) of the results was compared between the four devices.


The study enrolled 52 patients. With regard to the values of the side-to-side differences, the KT1000® and the GNRB® obtained the most similar values (CCC = 0.51, 95% CI 0.37–0.63). The two devices with the lowest correlation were the Telos® and the Rolimeter® (CCC = 0.04, 95% CI − 0.14–0.23). The comparability was considered average for the KT1000® and GNRB® and poor for the other devices.


The knee laxity devices used in regular practice are not comparable to one another. As a result, caution must be taken when comparing results from studies using these different devices.


Anterior cruciate ligament Knee laxity Knee laxity device Outcomes 


Compliance with ethical standards

This study was approved by the national ethics committee (No. 2015-A00423-46). It was also approved by the national health authority (DMDPT-DIAG/MM/2015-A00423-46).

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Balasch H, Schiller M, Friebel H, Hoffmann F (1999) Evaluation of anterior knee joint instability with the Rolimeter. A test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc 7:204–208CrossRefPubMedGoogle Scholar
  2. 2.
    Ballantyne BT, French AK, Heimsoth SL, Kachingwe AF, Lee JB, Soderberg GL (1995) Influence of examiner experience and gender on interrater reliability of KT-1000 arthrometer measurements. Phys Ther 75:898–906CrossRefPubMedGoogle Scholar
  3. 3.
    Beldame J, Mouchel S, Bertiaux S, Adam JM, Mouilhade F, Roussignol X et al (2012) Anterior knee laxity measurement: comparison of passive stress radiographs Telos((R)) and “Lerat”, and GNRB((R)) arthrometer. Orthop Traumatol Surg Res 98:744–750CrossRefPubMedGoogle Scholar
  4. 4.
    Bouguennec N, Odri GA, Graveleau N, Colombet P (2015) Comparative reproducibility of TELOS and GNRB(R) for instrumental measurement of anterior tibial translation in normal knees. Orthop Traumatol Surg Res 101:301–305CrossRefPubMedGoogle Scholar
  5. 5.
    Boyer P, Djian P, Christel P, Paoletti X, Degeorges R (2004) Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 90:757–764CrossRefPubMedGoogle Scholar
  6. 6.
    Collette M, Courville J, Forton M, Gagniere B (2012) Objective evaluation of anterior knee laxity; comparison of the KT-1000 and GNRB(R) arthrometers. Knee Surg Sports Traumatol Arthrosc 20:2233–2238CrossRefPubMedGoogle Scholar
  7. 7.
    Di Iorio A, Carnesecchi O, Philippot R, Farizon F (2014) Multiscale analysis of anterior cruciate ruptures: prospective study of 49 cases. Orthop Traumatol Surg Res 100:751–754CrossRefPubMedGoogle Scholar
  8. 8.
    Forster IW, Warren-Smith CD, Tew M (1989) Is the KT1000 knee ligament arthrometer reliable? J Bone Joint Surg Br 71:843–847CrossRefPubMedGoogle Scholar
  9. 9.
    Ganko A, Engebretsen L, Ozer H (2000) The rolimeter: a new arthrometer compared with the KT-1000. Knee Surg Sports Traumatol Arthrosc 8:36–39CrossRefPubMedGoogle Scholar
  10. 10.
    Garces GL, Perdomo E, Guerra A, Cabrera-Bonilla R (1995) Stress radiography in the diagnosis of anterior cruciate ligament deficiency. Int Orthop 19:86–88CrossRefPubMedGoogle Scholar
  11. 11.
    Graham GP, Johnson S, Dent CM, Fairclough JA (1991) Comparison of clinical tests and the KT1000 in the diagnosis of anterior cruciate ligament rupture. Br J Sports Med 25:96–97CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    James EW, Williams BT, LaPrade RF (2014) Stress radiography for the diagnosis of knee ligament injuries: a systematic review. Clin Orthop Relat Res 472:2644–2657CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jardin C, Chantelot C, Migaud H, Gougeon F, Debroucker MJ, Duquennoy A (1999) Reliability of the KT-1000 arthrometer in measuring anterior laxity of the knee: comparative analysis with Telos of 48 reconstructions of the anterior cruciate ligament and intra- and interobserver reproducibility. Rev Chir Orthop Reparatrice Appar Mot 85:698–707PubMedGoogle Scholar
  14. 14.
    Lefevre N, Bohu Y, Naouri JF, Klouche S, Herman S (2014) Validity of GNRB(R) arthrometer compared to Telos in the assessment of partial anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 22:285–290CrossRefPubMedGoogle Scholar
  15. 15.
    Lerat JL, Moyen B, Jenny JY, Perrier JP (1993) A comparison of pre-operative evaluation of anterior knee laxity by dynamic X-rays and by the arthrometer KT 1000. Knee Surg Sports Traumatol Arthrosc 1:54–59CrossRefPubMedGoogle Scholar
  16. 16.
    Lorbach O, Kieb M, Brogard P, Maas S, Pape D, Seil R (2012) Static rotational and sagittal knee laxity measurements after reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 20:844–850CrossRefPubMedGoogle Scholar
  17. 17.
    Markolf KL, Graff-Radford A, Amstutz HC (1978) In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60:664–674CrossRefPubMedGoogle Scholar
  18. 18.
    Panisset JC, Ntagiopoulos PG, Saggin PR, Dejour D (2012) A comparison of Telos stress radiography versus Rolimeter in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Traumatol Surg Res 98:751–758CrossRefPubMedGoogle Scholar
  19. 19.
    Pierrat B, Oullion R, Molimard J, Navarro L, Combreas M, Avril S et al (2015) Characterisation of in-vivo mechanical action of knee braces regarding their anti-drawer effect. Knee 22:80–87CrossRefPubMedGoogle Scholar
  20. 20.
    Pugh L, Mascarenhas R, Arneja S, Chin PY, Leith JM (2009) Current concepts in instrumented knee-laxity testing. Am J Sports Med 37:199–210CrossRefPubMedGoogle Scholar
  21. 21.
    Robert H, Nouveau S, Gageot S, Gagniere B (2009) A new knee arthrometer, the GNRB: experience in ACL complete and partial tears. Orthop Traumatol Surg Res 95:171–176CrossRefPubMedGoogle Scholar
  22. 22.
    Sernert N, Helmers J, Kartus C, Ejerhed L, Kartus J (2007) Knee-laxity measurements examined by a left-hand- and a right-hand-dominant physiotherapist, in patients with anterior cruciate ligament injuries and healthy controls. Knee Surg Sports Traumatol Arthrosc 15:1181–1186CrossRefPubMedGoogle Scholar
  23. 23.
    Wiertsema SH, van Hooff HJ, Migchelsen LA, Steultjens MP (2008) Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. Knee 15:107–110CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryCentre Hospitalier de VersaillesLe ChesnayFrance

Personalised recommendations