International Orthopaedics

, Volume 41, Issue 12, pp 2471–2477 | Cite as

Can the metaphyseal anchored Metha short stem safely be revised with a standard CLS stem? A biomechanical analysis

  • Shuang G. Yan
  • Matthias Woiczinski
  • Tobias F. Schmidutz
  • Patrick Weber
  • Alexander C. Paulus
  • Arnd Steinbrück
  • Volkmar Jansson
  • Florian SchmidutzEmail author
Original Paper



Short stem total hip arthroplasty (SHA) has gained increasing popularity as it conserves bone stock and is supposed to allow revision with a conventional stem. However, no study has evaluated whether the revision of a SHA with a standard total hip arthroplasty (THA) stem provides sufficient primary stability to allow osseous integration.


A neck preserving SHA (Metha) and a standard THA (CLS) stem were implanted into six composite femurs respectively and dynamically loaded (300–1700 N, 1 Hz). Primary stability was evaluated by three dimensional-micromotions (3D micro motion) at five points of the interface. Then, a revision scenario was created by removing the SHA and using the same CLS stem as a revision implant (CLS-revision group), with subsequent evaluation of the 3D micro motion according to the primary CLS stem.


The 3D micro motion pattern significantly differed in the primary situation between the short and the standard stem. The highest 3D micro motion were registered proximally for the Metha and distally for the CLS stem. Revising the Metha with a CLS stem revealed a bony defect at the calcar. However, the 3D micro motion of the CLS-revision group were not significant higher compared to those of the primary CLS stem.


Our results show, that SHA (Metha) and standard THA (CLS) provide a good primary stability, however with different pattern of anchorage. The CLS stem reached a similar stability in this revision scenario as the CLS in the primary situation, wherefore it can be assumed that in uncomplicated revisions the Metha short stem can safely be revised with a CLS standard stem.


Micromotion Initial fixation Anchorage Three dimensional 3D SHA 



This study includes parts of the thesis of YS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


There is no funding source.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants wherefore no informed consent had to be obtained from individual participants.


  1. 1.
    Schnurr C, Schellen B, Dargel J, Beckmann J, Eysel P, Steffen R (2016) Low short-stem revision rates: 1–11 year results from 1888 total hip arthroplasties. J Arthroplast. doi: 10.1016/j.arth.2016.08.009 Google Scholar
  2. 2.
    Huo SC, Wang F, Dong LJ, Wei W, Zeng JQ, Huang HX, Han QM, Duan RQ (2016) Short-stem prostheses in primary total hip arthroplasty: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 95(43):e5215. doi: 10.1097/MD.0000000000005215 CrossRefGoogle Scholar
  3. 3.
    van Oldenrijk J, Molleman J, Klaver M, Poolman RW, Haverkamp D (2014) Revision rate after short-stem total hip arthroplasty: a systematic review of 49 studies. Acta Orthop 85(3):250–258. doi: 10.3109/17453674.2014.908343 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Khanuja HS, Banerjee S, Jain D, Pivec R, Mont MA (2014) Short bone-conserving stems in cementless hip arthroplasty. J Bone Joint Surg Am 96(20):1742–1752. doi: 10.2106/JBJS.M.00780 CrossRefPubMedGoogle Scholar
  5. 5.
    von Lewinski G, Floerkemeier T (2015) 10-year experience with short stem total hip arthroplasty. Orthopedics 38(3 Suppl):S51–S56. doi: 10.3928/01477447-20150215-57 CrossRefGoogle Scholar
  6. 6.
    Kutzner KP, Freitag T, Kovacevis MP, Pfeil D, Reichel H, Bieger R (2016) One-stage bilateral versus unilateral short-stem total hip arthroplasty: comparison of migration patterns using “Ein-Bild-Roentgen-Analysis Femoral-Component-Analysis”. Int Orthop. doi: 10.1007/s00264-016-3184-5 Google Scholar
  7. 7.
    Budde S, Seehaus F, Schwarze M, Hurschler C, Floerkemeier T, Windhagen H, Noll Y, Ettinger M, Thorey F (2016) Analysis of migration of the Nanos(R) short-stem hip implant within two years after surgery. Int Orthop 40(8):1607–1614. doi: 10.1007/s00264-015-2999-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G, Floerkemeier T (2014) Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev (Pavia) 6(1):5211. doi: 10.4081/or.2014.5211 CrossRefGoogle Scholar
  9. 9.
    Bieger R, Ignatius A, Decking R, Claes L, Reichel H, Durselen L (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech (Bristol, Avon) 27(2):158–164. doi: 10.1016/j.clinbiomech.2011.08.004 CrossRefGoogle Scholar
  10. 10.
    Hochreiter J, Hejkrlik W, Emmanuel K, Hitzl W, Ortmaier R (2016) Blood loss and transfusion rate in short stem hip arthroplasty. A comparative study. Int Orthop. doi: 10.1007/s00264-016-3365-2 Google Scholar
  11. 11.
    Molli RG, Lombardi AV Jr, Berend KR, Adams JB, Sneller MA (2012) A short tapered stem reduces intraoperative complications in primary total hip arthroplasty. Clin Orthop Relat Res 470(2):450–461. doi: 10.1007/s11999-011-2068-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Aldinger PR, Jung AW, Breusch SJ, Ewerbeck V, Parsch D (2009) Survival of the cementless Spotorno stem in the second decade. Clin Orthop Relat Res 467(9):2297–2304. doi: 10.1007/s11999-009-0906-7 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Evola FR, Evola G, Graceffa A, Sessa A, Pavone V, Costarella L, Sessa G, Avondo S (2014) Performance of the CLS Spotorno uncemented stem in the third decade after implantation. Bone Joint J 96-B(4):455–461. doi: 10.1302/0301-620X.96B4.32607 CrossRefPubMedGoogle Scholar
  14. 14.
    Biemond JE, Venkatesan S, van Hellemondt GG (2015) Survivorship of the cementless Spotorno femoral component in patients under 50 years of age at a mean follow-up of 18.4 years. Bone Joint J 97-B(2):160–163. doi: 10.1302/0301-620X.97B2.34926 CrossRefPubMedGoogle Scholar
  15. 15.
    Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871CrossRefPubMedGoogle Scholar
  16. 16.
    Schmidutz F, Woiczinski M, Kistler M, Schroder C, Jansson V, Fottner A (2016) Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis. Clin Biomech (Bristol, Avon) 41:60–65. doi: 10.1016/j.clinbiomech.2016.12.003 CrossRefGoogle Scholar
  17. 17.
    Fottner A, Peter CV, Schmidutz F, Wanke-Jellinek L, Schroder C, Mazoochian F, Jansson V (2011) Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 26(8):830–835. doi: 10.1016/j.clinbiomech.2011.04.001 CrossRefGoogle Scholar
  18. 18.
    Gortz W, Nagerl UV, Nagerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng 124(6):706–713CrossRefPubMedGoogle Scholar
  19. 19.
    Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208:108–113Google Scholar
  20. 20.
    Fottner A, Schmid M, Birkenmaier C, Mazoochian F, Plitz W, Volkmar J (2009) Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 24(5):429–434. doi: 10.1016/j.clinbiomech.2009.02.007 CrossRefGoogle Scholar
  21. 21.
    Pepke W, Nadorf J, Ewerbeck V, Streit MR, Kinkel S, Gotterbarm T, Maier MW, Kretzer JP (2014) Primary stability of the Fitmore stem: biomechanical comparison. Int Orthop 38(3):483–488. doi: 10.1007/s00264-013-2138-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Buhler DW, Berlemann U, Lippuner K, Jaeger P, Nolte LP (1997) Three-dimensional primary stability of cementless femoral stems. Clin Biomech (Bristol, Avon) 12(2):75–86CrossRefGoogle Scholar
  23. 23.
    Nadorf J, Thomsen M, Gantz S, Sonntag R, Kretzer JP (2014) Fixation of the shorter cementless GTS stem: biomechanical comparison between a conventional and an innovative implant design. Arch Orthop Trauma Surg 134(5):719–726. doi: 10.1007/s00402-014-1946-3 CrossRefPubMedGoogle Scholar
  24. 24.
    Jakubowitz E, Bitsch RG, Heisel C, Lee C, Kretzer JP, Thomsen MN (2008) Primary rotational stability of cylindrical and conical revision hip stems as a function of femoral bone defects: an in vitro comparison. J Biomech 41(14):3078–3084. doi: 10.1016/j.jbiomech.2008.06.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Floerkemeier T, Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G (2013) The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora. Int Orthop 37(3):369–377. doi: 10.1007/s00264-012-1725-0 CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2017

Authors and Affiliations

  • Shuang G. Yan
    • 1
    • 2
  • Matthias Woiczinski
    • 1
  • Tobias F. Schmidutz
    • 1
    • 3
  • Patrick Weber
    • 1
  • Alexander C. Paulus
    • 1
  • Arnd Steinbrück
    • 1
  • Volkmar Jansson
    • 1
  • Florian Schmidutz
    • 1
    • 4
    Email author
  1. 1.Department of Orthopaedic Surgery, Physical Medicine and RehabilitationUniversity of Munich (LMU)MunichGermany
  2. 2.Anhui Medical University, The First Affiliated Hospital of Anhui Medical UniversityAnhui ShengChina
  3. 3.Physics Department Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  4. 4.BG Trauma CenterUniversity of TübingenTübingenGermany

Personalised recommendations