International Orthopaedics

, Volume 40, Issue 6, pp 1309–1319 | Cite as

Bone morphogenetic protein use in spine surgery—complications and outcomes: a systematic review

  • Antonio Faundez
  • Clément Tournier
  • Matthieu Garcia
  • Stéphane Aunoble
  • Jean-Charles Le HuecEmail author
Review Article



Because of significant complications related to the use of autologous bone grafts in spinal fusion surgery, bone substitutes and growth factors such as bone morphogenetic protein (BMP) have been developed. One of them, recombinant human (rh) BMP-2, has been approved by the Food and Drug Administration (FDA) for use under precise conditions. However, rhBMP-2-related side effects have been reported, used in FDA-approved procedures, but also in off-label use.A systematic review of clinical data was conducted to analyse the rhBMP-2-related adverse events (AEs), in order to assess their prevalence and the associated surgery practices.


Medline search with keywords “bone morphogenetic protein 2”, “lumbar spine”, “anterolateral interbody fusion” (ALIF) and the filter “clinical trial”. FDA published reports were also included. Study assessment was made by authors (experienced spine surgeons), based on quality of study designs and level of evidence.


Extensive review of randomised controlled trials (RCTs) and controlled series published up to the present point, reveal no evidence of a significant increase of AEs related to rhBMP-2 use during ALIF surgeries, provided that it is used following FDA guidelines. Two additional RCTs performed with rhBMP-2 in combination with allogenic bone dowels reported increased bone remodelling in BMP-treated patients. This AE was transient and had no consequence on the clinical outcome of the patients. No other BMP-related AEs were reported in these studies.


This literature review confirms that the use of rhBMP-2 following FDA-approved recommendations (i.e. one-level ALIF surgery with an LT-cage) is safe. The rate of complications is low and the AEs had been identified by the FDA during the pre-marketing clinical trials. The clinical efficiency of rhBMP-2 is equal or superior to that of allogenic or autologous bone graft in respect to fusion rate, low back pain disability, patient satisfaction and rate of re-operations. For all other off-label use, the safety and effectiveness of rhBMP-2 have not been established, and further RCTs with high level of evidence are required.


Bone morphogenetic protein Spinal fusion Osteoinduction Adverse effects 


Compliance with ethical standards

Declaration of competing interests

Nothing to disclose for the authors.


  1. 1.
    Lavery K, Swain P, Falb D, Alaoui-Ismaili MH (2008) BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283(30):20948–20958. doi: 10.1074/jbc.M800850200 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kawabata M, Imamura T, Miyazono K (1998) Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9(1):49–61CrossRefPubMedGoogle Scholar
  3. 3.
    Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620. doi: 10.1016/j.cellsig.2010.10.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Schwabe P, Simon P, Kronbach Z, Schmidmaier G, Wildemann B (2014) A pilot study investigating the histology and growth factor content of human non-union tissue. Int Orthop 38(12):2623–2629. doi: 10.1007/s00264-014-2496-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Johnson EE, Urist MR, Finerman GA (1988) Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. A preliminary report. Clin Orthop Relat Res 230:257–265PubMedGoogle Scholar
  6. 6.
    Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899CrossRefPubMedGoogle Scholar
  7. 7.
    FDA (2002) InFUSE™ Bone Graft/LT-CAGE™ Lumbar Tapered Fusion Devices—P000058. United States Food and Drug Administration. Accessed 05 Sept 2012
  8. 8.
    Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25(3):376–381CrossRefPubMedGoogle Scholar
  9. 9.
    Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15(5):337–349CrossRefPubMedGoogle Scholar
  10. 10.
    Burkus JK, Dorchak JD, Sanders DL (2003) Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine (Phila Pa 1976) 28(4):372–377. doi: 10.1097/01.BRS.0000048469.45035.B9 Google Scholar
  11. 11.
    Cahill KS, Chi JH, Day A, Claus EB (2009) Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 302(1):58–66. doi: 10.1001/jama.2009.956 CrossRefPubMedGoogle Scholar
  12. 12.
    Ong KL, Villarraga ML, Lau E, Carreon LY, Kurtz SM, Glassman SD (2010) Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine 35(19):1794–1800. doi: 10.1097/BRS.0b013e3181ecf6e4 CrossRefPubMedGoogle Scholar
  13. 13.
    Courvoisier A, Sailhan F, Laffenetre O, Obert L, French Study Group of BMPiOS (2014) Bone morphogenetic protein and orthopaedic surgery: can we legitimate its off-label use? Int Orthop 38(12):2601–2605. doi: 10.1007/s00264-014-2534-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Mroz TE, Wang JC, Hashimoto R, Norvell DC (2010) Complications related to osteobiologics use in spine surgery: a systematic review. Spine 35(9 Suppl):S86–S104. doi: 10.1097/BRS.0b013e3181d81ef2 CrossRefPubMedGoogle Scholar
  15. 15.
    FDA (2008) FDA public health notification: life-threatening complications associated with recombinant human bone morphogenetic protein in cervical spine fusion. US FDA.
  16. 16.
    Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27(21):2396–2408. doi: 10.1097/01.BRS.0000030193.26290.DD CrossRefPubMedGoogle Scholar
  17. 17.
    Burkus JK, Sandhu HS, Gornet MF, Longley MC (2005) Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am 87(6):1205–1212. doi: 10.2106/JBJS.D.02532 CrossRefPubMedGoogle Scholar
  18. 18.
    Burkus JK, Sandhu HS, Gornet MF (2006) Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. Spine (Phila Pa 1976) 31(7):775–781. doi: 10.1097/01.brs.0000206357.88287.5a CrossRefGoogle Scholar
  19. 19.
    Burkus JK, Heim SE, Gornet MF, Zdeblick TA (2003) Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16(2):113–122CrossRefPubMedGoogle Scholar
  20. 20.
    Burkus JK, Gornet MF, Schuler TC, Kleeman TJ, Zdeblick TA (2009) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 91(5):1181–1189. doi: 10.2106/JBJS.G.01485 CrossRefPubMedGoogle Scholar
  21. 21.
    Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ (2011) Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J 11(6):511–516. doi: 10.1016/j.spinee.2011.02.013 CrossRefPubMedGoogle Scholar
  22. 22.
    Comer GC, Smith MW, Hurwitz EL, Mitsunaga KA, Kessler R, Carragee EJ (2012) Retrograde ejaculation after anterior lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a 10-year cohort controlled study. Spine J 12(10):881–890. doi: 10.1016/j.spinee.2012.09.040 CrossRefPubMedGoogle Scholar
  23. 23.
    Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg (Br) 89(3):342–345. doi: 10.1302/0301-620X.89B3.18270 CrossRefGoogle Scholar
  24. 24.
    Slosar PJ, Josey R, Reynolds J (2007) Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J 7(3):301–307. doi: 10.1016/j.spinee.2006.10.015 CrossRefPubMedGoogle Scholar
  25. 25.
    Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB (2006) Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 31(10):E277–E284. doi: 10.1097/01.brs.0000216442.12092.01 CrossRefGoogle Scholar
  26. 26.
    Kleeman TJ, Ahn UM, Talbot-Kleeman A (2001) Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine (Phila Pa 1976) 26(24):2751–2756CrossRefGoogle Scholar
  27. 27.
    Vaidya R, Sethi A, Bartol S, Jacobson M, Coe C, Craig JG (2008) Complications in the use of rhBMP-2 in PEEK cages for interbody spinal fusions. J Spinal Disord Tech 21(8):557–562. doi: 10.1097/BSD.0b013e31815ea897 CrossRefPubMedGoogle Scholar
  28. 28.
    Hansen SM, Sasso RC (2006) Resorptive response of rhBMP2 simulating infection in an anterior lumbar interbody fusion with a femoral ring. J Spinal Disord Tech 19(2):130–134. doi: 10.1097/01.bsd.0000168512.61351.3a CrossRefPubMedGoogle Scholar
  29. 29.
    Mines D, Gu Y, Kou TD, Cooper GS (2011) Recombinant human bone morphogenetic protein-2 and pancreatic cancer: a retrospective cohort study. Pharmacoepidemiol Drug Saf 20(2):111–118. doi: 10.1002/pds.2057 CrossRefPubMedGoogle Scholar
  30. 30.
    Moshel YA, Hernandez EI, Kong L, Liu C, Samadani U (2008) Acute renal insufficiency, supraventricular tachycardia, and confusion after recombinant human bone morphogenetic protein-2 implantation for lumbosacral spine fusion. J Neurosurg Spine 8(6):589–593. doi: 10.3171/SPI/2008/8/6/589 CrossRefPubMedGoogle Scholar
  31. 31.
    Burkus JK, Dryer RF, Peloza JH (2012) Retrograde ejaculation following single-level anterior lumbar surgery with or without recombinant human bone morphogenetic protein-2 in 5 randomized controlled trials. J Neurosurg Spine. doi: 10.3171/2012.10.SPINE11908 PubMedGoogle Scholar
  32. 32.
    Williams BJ, Smith JS, Fu KM, Hamilton DK, Polly DW Jr, Ames CP, Berven SH, Perra JH, Knapp DR Jr, McCarthy RE, Shaffrey CI (2011) Does BMP increase the incidence of perioperative complications in spinal fusion? A comparison of 55,862 cases of spinal fusion with and without BMP. Spine. doi: 10.1097/BRS.0b013e318216d825 Google Scholar
  33. 33.
    Zhang JD, Poffyn B, Sys G, Uyttendaele D (2012) Are stand-alone cages sufficient for anterior lumbar interbody fusion? Orthop Surg 4(1):11–14. doi: 10.1111/j.1757-7861.2011.00164.x CrossRefPubMedGoogle Scholar
  34. 34.
    Smoljanovic T, Pecina M (2008) RE: complications attributable to the use of rhBMP-2 inside the femoral ring allograft during anterior lumbar interbody fusion. Spine J 8(2):413–414. doi: 10.1016/j.spinee.2007.11.004, author reply 414CrossRefPubMedGoogle Scholar
  35. 35.
    Kanatani M, Sugimoto T, Kaji H, Kobayashi T, Nishiyama K, Fukase M, Kumegawa M, Chihara K (1995) Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res 10(11):1681–1690. doi: 10.1002/jbmr.5650101110 CrossRefPubMedGoogle Scholar
  36. 36.
    Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491. doi: 10.1016/j.spinee.2011.04.023 CrossRefPubMedGoogle Scholar
  37. 37.
    Dimar JR, Glassman SD, Burkus KJ, Carreon LY (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine (Phila Pa 1976) 31(22):2534–2539. doi: 10.1097/01.brs.0000240715.78657.81, discussion 2540CrossRefGoogle Scholar
  38. 38.
    Sasso RC, Burkus JK, LeHuec JC (2003) Retrograde ejaculation after anterior lumbar interbody fusion: transperitoneal versus retroperitoneal exposure. Spine (Phila Pa 1976) 28(10):1023–1026. doi: 10.1097/01.BRS.0000062965.47779.EB Google Scholar
  39. 39.
    Smoljanovic T, Siric F, Bojanic I (2010) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 92(15):2614–2615, author reply 2615-2616PubMedGoogle Scholar
  40. 40.
    Than KD, Wang AC, Rahman SU, Wilson TJ, Valdivia JM, Park P, La Marca F (2011) Complication avoidance and management in anterior lumbar interbody fusion. Neurosurg Focus 31(4):E6. doi: 10.3171/2011.7.FOCUS11141 CrossRefPubMedGoogle Scholar
  41. 41.
    Inamasu J, Guiot BH (2005) Laparoscopic anterior lumbar interbody fusion: a review of outcome studies. Minim Invasive Neurosurg: MIN 48(6):340–347. doi: 10.1055/s-2005-915634 CrossRefPubMedGoogle Scholar
  42. 42.
    Singh K, Ahmadinia K, Park DK, Nandyala SV, Marquez-Lara A, Patel AA, Fineberg SJ (2014) Complications of spinal fusion with utilization of bone morphogenetic protein: a systematic review of the literature. Spine (Phila Pa 1976) 39(1):91–101. doi: 10.1097/brs.0000000000000004 CrossRefGoogle Scholar
  43. 43.
    Lykissas MG, Aichmair A, Sama AA, Hughes AP, Lebl DR, Cammisa FP, Girardi FP (2014) Nerve injury and recovery after lateral lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a cohort-controlled study. Spine J 14(2):217–224. doi: 10.1016/j.spinee.2013.06.109 CrossRefPubMedGoogle Scholar
  44. 44.
    Carragee EJ, Chu G, Rohatgi R, Hurwitz EL, Weiner BK, Yoon ST, Comer G, Kopjar B (2013) Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am 95(17):1537–1545. doi: 10.2106/jbjs.l.01483 CrossRefPubMedGoogle Scholar
  45. 45.
    Kelly MP, Savage JW, Bentzen SM, Hsu WK, Ellison SA, Anderson PA (2014) Cancer risk from bone morphogenetic protein exposure in spinal arthrodesis. J Bone Joint Surg Am 96(17):1417–1422. doi: 10.2106/jbjs.m.01190 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Benglis D, Wang MY, Levi AD (2008) A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery 62(5 Suppl 2):ONS423–ONS431. doi: 10.1227/01.neu.0000326030.24220.d8, discussion ONS431PubMedGoogle Scholar
  47. 47.
    Glassman SD, Gum JL, Crawford CH 3rd, Shields CB, Carreon LY (2011) Complications with recombinant human bone morphogenetic protein-2 in posterolateral spine fusion associated with a dural tear. Spine J 11(6):522–526. doi: 10.1016/j.spinee.2010.05.016 CrossRefPubMedGoogle Scholar
  48. 48.
    Latzman JM, Kong L, Liu C, Samadani U (2010) Administration of human recombinant bone morphogenetic protein-2 for spine fusion may be associated with transient postoperative renal insufficiency. Spine (Phila Pa 1976) 35(7):E231–E237. doi: 10.1097/BRS.0b013e3181c71447 CrossRefGoogle Scholar
  49. 49.
    Glassman SD, Dimar JR, Carreon LY, Campbell MJ, Puno RM, Johnson JR (2005) Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine 30(15):1694–1698CrossRefPubMedGoogle Scholar
  50. 50.
    Glassman SD, Carreon LY, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, Dimar JR (2008) RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine 33(26):2843–2849. doi: 10.1097/BRS.0b013e318190705d CrossRefPubMedGoogle Scholar
  51. 51.
    Dawson E, Bae HW, Burkus JK, Stambough JL, Glassman SD (2009) Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am 91(7):1604–1613. doi: 10.2106/JBJS.G.01157 CrossRefPubMedGoogle Scholar
  52. 52.
    Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY (2009) Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 91(6):1377–1386. doi: 10.2106/JBJS.H.00200 CrossRefPubMedGoogle Scholar
  53. 53.
    Haid RW Jr, Branch CL Jr, Alexander JT, Burkus JK (2004) Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 4(5):527–538. doi: 10.1016/j.spinee.2004.03.025, discussion 538-529CrossRefPubMedGoogle Scholar
  54. 54.
    Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA (2003) A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine 28(12):1219–1224. doi: 10.1097/01.BRS.0000065486.22141.CA, discussion 1225PubMedGoogle Scholar
  55. 55.
    Papakostidis C, Kontakis G, Bhandari M, Giannoudis PV (2008) Efficacy of autologous iliac crest bone graft and bone morphogenetic proteins for posterolateral fusion of lumbar spine: a meta-analysis of the results. Spine (Phila Pa 1976) 33(19):E680–E692. doi: 10.1097/BRS.0b013e3181844eca CrossRefGoogle Scholar
  56. 56.
    Hinsenkamp M, Collard JF (2015) Growth factors in orthopaedic surgery: demineralized bone matrix versus recombinant bone morphogenetic proteins. Int Orthop 39(1):137–147. doi: 10.1007/s00264-014-2562-0 CrossRefPubMedGoogle Scholar
  57. 57.
    Choi JY, Sung KH (2006) Subsidence after anterior lumbar interbody fusion using paired stand-alone rectangular cages. Eur Spine J 15(1):16–22. doi: 10.1007/s00586-004-0817-y CrossRefPubMedGoogle Scholar
  58. 58.
    Beutler WJ, Peppelman WC Jr (2003) Anterior lumbar fusion with paired BAK standard and paired BAK Proximity cages: subsidence incidence, subsidence factors, and clinical outcome. Spine J 3(4):289–293CrossRefPubMedGoogle Scholar
  59. 59.
    Winkler S, Niedermair T, Fuchtmeier B, Grifka J, Grassel S, Anders S, Heers G, Wagner F (2015) The impact of hypoxia on mesenchymal progenitor cells of human skeletal tissue in the pathogenesis of heterotopic ossification. Int Orthop 39(12):2495–2501. doi: 10.1007/s00264-015-2995-0 CrossRefPubMedGoogle Scholar
  60. 60.
    McKay B, Sandhu HS (2002) Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine (Phila Pa 1976) 27(16 Suppl 1):S66–S85CrossRefGoogle Scholar
  61. 61.
    Mummaneni PV, Pan J, Haid RW, Rodts GE (2004) Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion: a preliminary report. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2004. J Neurosurg Spine 1(1):19–23. doi: 10.3171/spi.2004.1.1.0019 CrossRefPubMedGoogle Scholar
  62. 62.
    Joseph V, Rampersaud YR (2007) Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine (Phila Pa 1976) 32(25):2885–2890. doi: 10.1097/BRS.0b013e31815b7596 CrossRefGoogle Scholar
  63. 63.
    Dmitriev AE, Lehman RA, Symes AJ (2011) Bone morphogenetic protein-2 and spinal arthrodesis: the basic science perspective on protein interaction with the nervous system. Spine J 11(6):500–505CrossRefPubMedGoogle Scholar
  64. 64.
    Sasso RC, Best NM, Mummaneni PV, Reilly TM, Hussain SM (2005) Analysis of operative complications in a series of 471 anterior lumbar interbody fusion procedures. Spine (Phila Pa 1976) 30(6):670–674CrossRefGoogle Scholar
  65. 65.
    Sasso RC, Kitchel SH, Dawson EG (2004) A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device. Spine (Phila Pa 1976) 29(2):113–122. doi: 10.1097/01.BRS.0000107007.31714.77, discussion 121-112CrossRefGoogle Scholar
  66. 66.
    Jarrett CD, Heller JG, Tsai L (2009) Anterior exposure of the lumbar spine with and without an “access surgeon”: morbidity analysis of 265 consecutive cases. J Spinal Disord Tech 22(8):559–564. doi: 10.1097/BSD.0b013e318192e326 CrossRefPubMedGoogle Scholar
  67. 67.
    Albilia JB, Tenenbaum HC, Clokie CM, Walt DR, Baker GI, Psutka DJ, Backstein D, Peel SA (2013) Serum levels of BMP-2, 4, 7 and AHSG in patients with degenerative joint disease requiring total arthroplasty of the hip and temporomandibular joints. J Orthop Res 31(1):44–52. doi: 10.1002/jor.22182 CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2016

Authors and Affiliations

  • Antonio Faundez
    • 1
  • Clément Tournier
    • 2
  • Matthieu Garcia
    • 2
  • Stéphane Aunoble
    • 2
  • Jean-Charles Le Huec
    • 2
    Email author
  1. 1.Hôpital Universitaire de GenèveGeneva 14Switzerland
  2. 2.Université BordeauxBordeaux CedexFrance

Personalised recommendations