Advertisement

International Orthopaedics

, Volume 40, Issue 3, pp 625–632 | Cite as

Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee

  • Martin Brix
  • Martin Kaipel
  • Richard Kellner
  • Markus Schreiner
  • Sebastian Apprich
  • Harald Boszotta
  • Reinhard Windhager
  • Stephan Domayer
  • Siegfried Trattnig
Original Paper

Abstract

Introduction

The treatment of larger osteochondral lesions in the knee is still a clinical challenge. One promising strategy to overcome this problem could be surgical repair by using a cell-free multilayered nano-composite scaffold.

Method

In this prospective cohort study eight consecutive patients which suffered from a single osteochondral lesion (≥1.5 cm2) on the femoral condyle were enrolled. The repair potential of the implant was assessed by using MRI based biochemical MR sequences (T2 mapping) as well as semi-quantitative morphological analyses (MOCART score) at 18 months after the surgery. The clinical outcome was determined at six, 12, 18, and 24 month follow ups by using IKDC, Tegner-Lysholm, and Cincinnati knee scores.

Results

Seven out of eight patients showed a complete integration of the scaffold into the border zone and five out of eight patients excellent or good subchondral ossification of the implant at 18 months following implantation. The surface of the repair tissue was found to be intact in all eight patients. T2 mapping data and the zonal T2 index significantly differed in the repair tissue compared to the healthy control cartilage (P < 0.001) which indicates a limited quality of the repair cartilage. The clinical outcome scores consistently improved during the follow up period without reaching statistical significance.

Conclusions

Osteochondral repair by implanting the MaioRegen® scaffold provides a successful osteoconduction and filling of the cartilage defect. However there is evidence for a limited repair cartilage tissue quality at 18 months after the surgery.

Keywords

Osteochondral lesions Knee Osteochondral repair Scaffold 

Notes

Acknowledgments

The authors deeply appreciate Michael Weber (MD) for his help with statistics.

Compliance with ethical standards

Conflicts of interests

The authors declare that there are no existing conflicts of interest.

References

  1. 1.
    McCormick F, Harris JD, Abrams GD, Frank R, Gupta A, Hussey K, Wilson H, Bach B Jr, Cole B (2014) Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy 30(2):222–226CrossRefPubMedGoogle Scholar
  2. 2.
    Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl 1):S11–S15CrossRefPubMedGoogle Scholar
  4. 4.
    Bentley G, Bhamra JS, Gikas PD, Skinner JA, Carrington R, Briggs TW (2013) Repair of osteochondral defects in joints—how to achieve success. Injury 44(Suppl 1):S3–S10Google Scholar
  5. 5.
    Oussedik S, Tsitskaris K, Parker D (2015) Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy 31(4):732–744CrossRefPubMedGoogle Scholar
  6. 6.
    McCoy B, Miniaci A (2012) Osteochondral autograft transplantation/mosaicplasty. J Knee Surg 25(2):99–108CrossRefPubMedGoogle Scholar
  7. 7.
    Chahal J, Gross AE, Gross C, Mall N, Dwyer T, Chahal A, Whelan DB, Cole BJ (2013) Outcomes of osteochondral allograft transplantation in the knee. Arthroscopy 29(3):575–588CrossRefPubMedGoogle Scholar
  8. 8.
    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701CrossRefPubMedGoogle Scholar
  9. 9.
    Berruto M, Delcogliano M, de Caro F, Carimati G, Uboldi F, Ferrua P, Ziveri G, De Biase CF (2014) Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med 42(7):1607–1617CrossRefPubMedGoogle Scholar
  10. 10.
    Kon E, Filardo G, Di Martino A, Busacca M, Moio A, Perdisa F, Marcacci M (2014) Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 42(1):158–165CrossRefPubMedGoogle Scholar
  11. 11.
    Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2015) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc 18Google Scholar
  12. 12.
    Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS (2013) Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthr Cartil 21(10):1474–1484PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17(1):103–118PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, Trattnig S (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur Radiol 52(3):310–319CrossRefGoogle Scholar
  15. 15.
    Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1):16–23CrossRefPubMedGoogle Scholar
  16. 16.
    Trattnig S, Ohel K, Mlynarik V, Juras V, Zbyn S, Korner A (2015) Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology—GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr Cartil 23(12):2224–2232Google Scholar
  17. 17.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefPubMedGoogle Scholar
  18. 18.
    Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M (2013) Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med 41(8):1786–1793CrossRefPubMedGoogle Scholar
  19. 19.
    Filardo G, Kon E, Di Martino A, Perdisa F, Busacca M, Tentoni F, Balboni F, Marcacci M (2014) Is the clinical outcome after cartilage treatment affected by subchondral bone edema? Knee Surg Sports Traumatol Arthrosc 22(6):1337–1344CrossRefPubMedGoogle Scholar
  20. 20.
    Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124PubMedGoogle Scholar
  21. 21.
    Kon E, Mutini A, Arcangeli E, Delcogliano M, Filardo G, Nicoli Aldini N, Pressato D, Quarto R, Zaffagnini S, Marcacci M (2010) Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med 4(4):300–308CrossRefPubMedGoogle Scholar
  22. 22.
    Glaser C (2005) New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin N Am 43(4):641–653CrossRefPubMedGoogle Scholar
  23. 23.
    Recht MP, Goodwin DW, Winalski CS, White LM (2005) MRI of articular cartilage: revisiting current status and future directions. AJR Am J Roentgenol 185(4):899–914CrossRefPubMedGoogle Scholar
  24. 24.
    Lusse S, Claassen H, Gehrke T, Hassenpflug J, Schunke M, Heller M, Gluer CC (2000) Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 18(4):423–430CrossRefPubMedGoogle Scholar
  25. 25.
    Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, White LM, Trattnig S (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures--initial experience. Radiology 247(1):154–161CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2016

Authors and Affiliations

  • Martin Brix
    • 1
  • Martin Kaipel
    • 2
  • Richard Kellner
    • 2
  • Markus Schreiner
    • 1
  • Sebastian Apprich
    • 3
  • Harald Boszotta
    • 2
  • Reinhard Windhager
    • 3
  • Stephan Domayer
    • 1
  • Siegfried Trattnig
    • 1
  1. 1.Centre of Excellence “High-field Magnetic Resonance (MR)”Medical University ViennaViennaAustria
  2. 2.Department of Orthopaedic and Trauma SurgeryBarmherzige Brüder HospitalEisenstadtAustria
  3. 3.Department of OrthopaedicsMedical University ViennaViennaAustria

Personalised recommendations