International Orthopaedics

, Volume 40, Issue 10, pp 2163–2169 | Cite as

Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration

  • Ion Carrera
  • Pablo Eduardo Gelber
  • Gaetan Chary
  • Miguel A. González-Ballester
  • Juan Carlos Monllau
  • Jerome Noailly
Original Paper



To assess, with finite element (FE) calculations, whether immediate weight bearing would be possible after surgical stabilization either with cannulated screws or with a locking plate in a split fracture of the lateral tibial plateau (LTP).


A split fracture of the LTP was recreated in a FE model of a human tibia. A three-dimensional FE model geometry of a human femur-tibia system was obtained from the VAKHUM project database, and was built from CT images from a subject with normal bone morphologies and normal alignment. The mesh of the tibia was reconverted into a geometry of NURBS surfaces. A split fracture of the lateral tibial plateau was reproduced by using geometrical data from patient radiographs. A locking screw plate (LP) and a cannulated screw (CS) systems were modelled to virtually reduce the fracture and 80 kg static body-weight was simulated.


While the simulated body-weight led to clinically acceptable interfragmentary motion, possible traumatic bone shear stresses were predicted nearby the cannulated screws. With a maximum estimation of about 1.7 MPa maximum bone shear stresses, the Polyax system might ensure more reasonable safety margins.


Split fractures of the LTP fixed either with locking screw plate or cannulated screws showed no clinically relevant IFM in a FE model. The locking screw plate showed higher mechanical stability than cannulated screw fixation. The locking screw plate might also allow full or at least partial weight bearing under static posture at time zero.


Tibial plateau fractures Finite element Weight bearing Interfragmentary motion Bone fixation Fracture fixation 


  1. 1.
    Burdin G (2013) Arthroscopic management of tibial plateau fractures: surgical technique. Orthop Traumatol Surg Res 99:S208–S218CrossRefPubMedGoogle Scholar
  2. 2.
    Ehlinger M, Adamczewski B, Rahmé M, Adam P, Bonnomet F (2015) Comparison of the pre-shaped anatomical locking plate of 3.5 mm versus 4.5 mm for the treatment of tibial plateau fractures. Int Orthop 39(12):2465–2471CrossRefPubMedGoogle Scholar
  3. 3.
    Tscherne H, Lobenhoffer P (1993) Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res 87–100Google Scholar
  4. 4.
    Eckstein F, Hudelmaier M, Putz R (2006) The effects of exercise on human articular cartilage. J Anat 208:491–512CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Honkonen SE (1995) Degenerative arthritis after tibial plateau fractures. J Orthop Trauma 9:273–277CrossRefPubMedGoogle Scholar
  6. 6.
    Parker PJ, Tepper KB, Brumback RJ et al (1999) Biomechanical comparison of fixation of type-I fractures of the lateral tibial plateau. Is the antiglide screw effective? J Bone Joint Surg (Br) 81:478–480CrossRefGoogle Scholar
  7. 7.
    Boisrenoult P, Bricteux S, Beaufils P, Hardy P (2000) Screws versus screw-plate fixation of type 2 schatzker fractures of the lateral tibial plateau. Cadaver biomechanical study. Arthroscopy French Society. Rev Chir Orthop Reparatrice Appar Mot 86:707–711PubMedGoogle Scholar
  8. 8.
    Ratcliff JR, Werner FW, Green JK, Harley BJ (2007) Medial buttress versus lateral locked plating in a cadaver medial tibial plateau fracture model. J Orthop Trauma 21:444–448CrossRefPubMedGoogle Scholar
  9. 9.
    Cift H, Cetik O, Kalaycioglu B et al (2010) Biomechanical comparison of plate-screw and screw fixation in medial tibial plateau fractures (Schatzker 4). A model study. Orthop Traumatol Surg Res 96:263–267CrossRefPubMedGoogle Scholar
  10. 10.
    Anderson DD, Thomas TP, Campos Marin A et al (2014) Computational techniques for the assessment of fracture repair. Injury 45:997–1003CrossRefGoogle Scholar
  11. 11.
    Van Den Munckhof S, Zadpoor AA (2014) How accurately can we predict the fracture load of the proximal femur using finite element models? Clin Biomech 29:373–380CrossRefGoogle Scholar
  12. 12.
    Falcinelli C, Schileo E, Balistreri L et al (2014) Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women. Bone 67:71–80CrossRefPubMedGoogle Scholar
  13. 13.
    Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMedGoogle Scholar
  14. 14.
    Guo XE (2001) Mechanical properties of cortical bone and cancellous bone tissue. Bone Mech. Handb. Second EdiGoogle Scholar
  15. 15.
    Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 16:965–969CrossRefPubMedGoogle Scholar
  16. 16.
    ASTM F136 “Standard specification for wrought titanium-6aluminum-4vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNS R56401)Google Scholar
  17. 17.
    Sanyal A, Gupta A, Bayraktar HH et al (2012) Shear strength behavior of human trabecular bone. J Biomech 45:2513–2519CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ding M, Dalstra M, Danielsen CC et al (1997) Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg (Br) 79:995–1002CrossRefGoogle Scholar
  19. 19.
    Karunakar MA, Egol KA, Peindl R et al (2002) Split depression tibial plateau fractures: a biomechanical study. J Orthop Trauma 16:172–177CrossRefPubMedGoogle Scholar
  20. 20.
    Koval KJ, Polatsch D, Kummer FJ et al (1996) Split fractures of the lateral tibial plateau: evaluation of three fixation methods. J Orthop Trauma 10:304–308CrossRefPubMedGoogle Scholar
  21. 21.
    Haller JM, O’Toole R, Graves M, et al. (2015) How much articular displacement can be detected using fluoroscopy for tibial plateau fractures? InjuryGoogle Scholar
  22. 22.
    Claes LE, Heigele CA, Neidlinger-Wilke C, et al. (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res S132–S147Google Scholar
  23. 23.
    Wang H, Chen T, Torzilli P et al (2014) Dynamic contact stress patterns on the tibial plateaus during simulated gait: a novel application of normalized cross correlation. J Biomech 47:568–574CrossRefPubMedGoogle Scholar
  24. 24.
    Hurwitz DE, Sumner DR, Andriacchi TP, Sugar DA (1998) Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech 31:423–430CrossRefPubMedGoogle Scholar
  25. 25.
    Lin YC, Walter JP, Banks SA et al (2010) Simultaneous prediction of muscle and contact forces in the knee during gait. J Biomech 43:945–952CrossRefPubMedGoogle Scholar
  26. 26.
    Adouni M, Shirazi-Adl A (2014) Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects. J Orthop Res 32:69–78CrossRefPubMedGoogle Scholar
  27. 27.
    Kutzner I, Trepczynski A, Heller MO, Bergmann G (2013) Knee adduction moment and medial contact force-facts about their correlation during gait. PLoS One 8:8–15CrossRefGoogle Scholar
  28. 28.
    Chang SM, Hu SJ, Zhang YQ, Yao MW, Ma Z, Wang X, Dargel J, Eysel P (2014) A surgical protocol for bicondylar four-quadrant tibial plateau fractures. Int Orthop 38(12):2559–2564CrossRefPubMedGoogle Scholar
  29. 29.
    Li Q, Zhang YQ, Chang SM (2014) Posterolateral fragment characteristics in tibial plateau fractures. Int Orthop 38(3):681–682CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Thorp LE, Wimmer MA, Block JA et al (2006) Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis. Bone 39:1116–1122CrossRefPubMedGoogle Scholar
  31. 31.
    Prendergast PJ, Galibarov PE, Lowery C, Lennon AB (2011) Computer simulating a clinical trial of a load-bearing implant: an example of an intramedullary prosthesis. J Mech Behav Biomed Mater 4:1880–1887CrossRefPubMedGoogle Scholar
  32. 32.
    Taddei F, Palmadori I, Taylor WR et al (2014) Safety factor of the proximal femur during gait: a population-based finite element study article. J Biomech 47:3433–3440CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2016

Authors and Affiliations

  • Ion Carrera
    • 1
  • Pablo Eduardo Gelber
    • 1
    • 2
  • Gaetan Chary
    • 3
    • 4
  • Miguel A. González-Ballester
    • 3
    • 5
  • Juan Carlos Monllau
    • 2
    • 6
  • Jerome Noailly
    • 3
    • 4
  1. 1.Orthopaedic Surgery Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.ICATME-Hospital Universitari Quirón-DexeusUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Department of Communication and information Technologies (DTIC)Universitat Pompeu FabraBarcelonaSpain
  4. 4.Institute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  5. 5.ICREABarcelonaSpain
  6. 6.Orthopaedic Surgery DepartmentParc de Salut Mar, Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations