International Orthopaedics

, Volume 40, Issue 8, pp 1607–1614 | Cite as

Analysis of migration of the Nanos® short-stem hip implant within two years after surgery

  • Stefan BuddeEmail author
  • Frank Seehaus
  • Michael Schwarze
  • Christof Hurschler
  • Thilo Floerkemeier
  • Henning Windhagen
  • Yvonne Noll
  • Max Ettinger
  • Fritz Thorey
Original Paper



Short-stem implants provide a bone-preserving alternative in total hip arthroplasty. However, some evidence exists that the smaller implant-bone contact surface may compromise primary stability and impair osseo-integration. The purpose of this study was to analyse the migration characteristics of the Nanos® short stem over two years by means of model-based roentgen stereophotogrammetric analysis (MBRSA).


Eighteen patients aged 53.6 ± 7.2 years were included. After being treated with a Nanos implant, 14 patients were followed-up radiologically at three, six, 12 and 24 months by means of MBRSA. Early implant migration was calculated. Clinical data have been assessed in addition.


Highest translational migration was observed with a mean value of –0.22 ± 0.39 mm along the proximo-distal axis after three months and highest rotational migration with 0.8 ± 3.2° also around the y-axis after two years. The resulting total migration was 0.46 ± 0.31 mm, with the largest proportion occurring within three months after surgery (0.40 ± 0.34 mm).


The Nanos short-stem hip implant shows only a slight initial migration within three months after implantation, followed by secondary stabilisation. These results suggest both good primary stability and osseo-integration, suggesting a low risk of aseptic loosening.


RSA Total hip arthroplasty Short stem Migration 



The authors wish to thank Christina Keller for processing the RSA radiographs. Smith & Nephew Orthopaedics AG (Baar, Switzerland) acted as the sponsor of this study, granting financial compensation for expenses. The company took part neither in analysis and interpretation of data nor in preparation of the manuscript. None of the authors had a further conflict of interest that may have biased the study.


  1. 1.
    McLaughlin JR (1997) Total hip arthroplasty with an uncemented femoral component. Excellent results at ten-year follow-up. J Bone Joint Surg (Br) 79:900–7CrossRefGoogle Scholar
  2. 2.
    Hube R (2004) Early functional results with the Mayo-hip, a short stem system with metaphyseal-intertrochanteric fixation. Orthopade 33:1249–58CrossRefPubMedGoogle Scholar
  3. 3.
    Reimeringer M, Nuno N, Desmarais-Trepanier C et al (2013) The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis. Comput Methods Biomech Biomed Engin 16:1221–31CrossRefPubMedGoogle Scholar
  4. 4.
    Rohrl SM, Li MG, Pedersen E et al (2006) Migration pattern of a short femoral neck preserving stem. Clin Orthop Relat Res 448:73–8CrossRefPubMedGoogle Scholar
  5. 5.
    Nieuwenhuijse MJ, Valstar ER, Nelissen RG (2012) 5-year clinical and radiostereometric analysis (RSA) follow-up of 39 CUT femoral neck total hip prostheses in young osteoarthritis patients. Acta Orthop 83:334–41CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lazarinis S, Mattsson P, Milbrink J et al (2013) A prospective cohort study on the short collum femoris-preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84:32–9CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zeh A, Pankow F, Rollinhoff M et al (2013) A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg 79:174–80PubMedGoogle Scholar
  8. 8.
    Ryd L, Albrektsson BE, Carlsson L et al (1995) Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg (Br) 77:377–83Google Scholar
  9. 9.
    Karrholm J, Borssen B, Lowenhielm G, Snorrason F (1994) Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg (Br) 76:912–7Google Scholar
  10. 10.
    Valstar ER (2006) Radiostereometric analysis in orthopaedic surgery: editorial comment. Clin Orthop Relat Res 448:2CrossRefPubMedGoogle Scholar
  11. 11.
    Sundfeldt M, Carlsson LV, Johansson CB et al (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77:177–97CrossRefPubMedGoogle Scholar
  12. 12.
    van Oldenrijk J, Molleman J, Klaver M et al (2014) Revision rate after short-stem total hip arthroplasty: a systematic review of 49 studies. Acta Orthop 85:250–8CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gulow J, Scholz R, Freiherr vS-S (2007) Short-stemmed endoprostheses in total hip arthroplasty. Orthopade 36:353–9CrossRefPubMedGoogle Scholar
  14. 14.
    Lombardi AV, Jr., Berend KR, Adams JB (2009) A short stem solution: through small portals. Orthopedics 32(9)Google Scholar
  15. 15.
    Valstar ER (2001) Model-based roentgen stereophotogrammetry of orthopaedic implants. J Biomech 34:715–22CrossRefPubMedGoogle Scholar
  16. 16.
    Kaptein BL (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36:873–82CrossRefPubMedGoogle Scholar
  17. 17.
    Valstar ER, Gill R, Ryd L et al (2005) Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 76:563–72CrossRefPubMedGoogle Scholar
  18. 18.
    Seehaus F, Emmerich J, Kaptein BL et al (2009) Experimental analysis of model-based roentgen stereophotogrammetric analysis (MBRSA) on four typical prosthesis components. J Biomech Eng 131:041004–1CrossRefPubMedGoogle Scholar
  19. 19.
    Klassbo M, Larsson E, Mannevik E (2003) Hip disability and osteoarthritis outcome score. An extension of the Western Ontario and McMaster universities osteoarthritis index. Scand J Rheumatol 32:46–51CrossRefPubMedGoogle Scholar
  20. 20.
    Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–55PubMedGoogle Scholar
  21. 21.
    Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–83CrossRefPubMedGoogle Scholar
  22. 22.
    Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg (Br) 82:952–8CrossRefGoogle Scholar
  23. 23.
    Stefansdottir A, Franzen H, Johnsson R et al (2004) Movement pattern of the Exeter femoral stem; a radiostereometric analysis of 22 primary hip arthroplasties followed for 5 years. Acta Orthop Scand 75:408–14CrossRefPubMedGoogle Scholar
  24. 24.
    Nieuwenhuijse MJ, Valstar ER, Kaptein BL, Nelissen RG (2012) The Exeter femoral stem continues to migrate during its first decade after implantation: 10–12 years of follow-up with radiostereometric analysis (RSA). Acta Orthop 83:129–34CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McCalden RW, Charron KD, Yuan X et al (2010) Randomised controlled trial comparing early migration of two collarless polished cemented stems using radiostereometric analysis. J Bone Joint Surg (Br) 92:935–40CrossRefGoogle Scholar
  26. 26.
    Derbyshire B, Porter ML (2007) A study of the Elite Plus femoral component using radiostereometric analysis. J Bone Joint Surg (Br) 89:730–5CrossRefGoogle Scholar
  27. 27.
    Callary SA, Campbell DG, Mercer GE et al (2012) The 6-year migration characteristics of a hydroxyapatite-coated femoral stem: a radiostereometric analysis study. J Arthroplasty 27:1344–8CrossRefPubMedGoogle Scholar
  28. 28.
    Stihsen C, Radl R, Keshmiri A et al (2012) Subsidence of a cementless femoral component influenced by body weight and body mass index. Int Orthop 36:941–7CrossRefPubMedGoogle Scholar
  29. 29.
    Baad-Hansen T, Storgaard Jakobsen S, Soballe K (2011) Two-year migration results of the ReCap hip resurfacing system-a radiostereometric follow-up study of 23 hips. Int Orthop 35:497–502CrossRefPubMedGoogle Scholar
  30. 30.
    Campbell D, Mercer G, Nilsson KG et al (2011) Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int Orthop 35:483–8CrossRefPubMedGoogle Scholar
  31. 31.
    de Vries LM (2014) The predictive value of radiostereometric analysis for stem survival in total hip arthroplasty. A systematic review. Hip Int 24:215–22CrossRefPubMedGoogle Scholar
  32. 32.
    Stukenborg-Colsman C (2007) Femoral neck prostheses. Orthopade 36:347–52CrossRefPubMedGoogle Scholar
  33. 33.
    Krismer M, Biedermann R, Stockl B et al (1999) The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-bild-roentgen-analyse-femoral component analysis. J Bone Joint Surg (Br) 81:273–80CrossRefGoogle Scholar
  34. 34.
    Kaipel M, Grabowiecki P, Sinz K et al (2015) Migration characteristics and early clinical results of the NANOS® short-stem hip arthroplasty. Wien Klin Wochenschr 127(9–10):375–8CrossRefPubMedGoogle Scholar
  35. 35.
    Freitag T, Kappe T, Fuchs M et al (2014) Migration pattern of a femoral short-stem prosthesis: a 2-year EBRA-FCA-study. Arch Orthop Trauma Surg 134:1003–8CrossRefPubMedGoogle Scholar
  36. 36.
    Schmidutz F, Graf T, Mazoochian F et al (2012) Migration analysis of a metaphyseal anchored short-stem hip prosthesis. Acta Orthop 83:360–5CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gotze C, Ehrenbrink J, Ehrenbrink H (2010) Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall 148:398–405CrossRefPubMedGoogle Scholar
  38. 38.
    Ettinger M, Ettinger P, Lerch M et al (2011) The NANOS short stem in total hip arthroplasty: a mid term follow-up. Hip Int 21:583–6CrossRefPubMedGoogle Scholar
  39. 39.
    Haugan K, Husby OS, Klaksvik J, Foss OA (2012) The migration pattern of the Charnley femoral stem: a five-year follow-up RSA study in a well-functioning patient group. J Orthop Traumatol 13:137–43CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lindalen E, Dahl J, Nordsletten L et al (2012) Reverse hybrid and cemented hip replacement compared using radiostereometry and dual-energy X-ray absorptiometry: 43 hips followed for 2 years in a prospective trial. Acta Orthop 83:592–8CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Skoldenberg OG, Sjoo H, Kelly-Pettersson P et al (2014) Good stability but high periprosthetic bone mineral loss and late-occurring periprosthetic fractures with use of uncemented tapered femoral stems in patients with a femoral neck fracture. Acta Orthop 85:396–402CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Soderlund P, Dahl J, Rohrl S et al (2012) 10-year results of a new low-monomer cement: follow-up of a randomized RSA study. Acta Orthop 83:604–8CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Markmiller M, Weiss T, Kreuz P et al (2011) Partial weightbearing is not necessary after cementless total hip arthroplasty: a two-year prospective randomized study on 100 patients. Int Orthop 35:1139–43CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2015

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany
  2. 2.Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany
  3. 3.Centre for Hip, Knee and Foot Surgery, Sports TraumatologyATOS HospitalHeidelbergGermany

Personalised recommendations