International Orthopaedics

, Volume 40, Issue 1, pp 21–27 | Cite as

Fluoroscopy assessment during anterior minimally invasive hip replacement is more accurate than with the posterior approach

Original Paper

Abstract

Purpose

Acetabular component position is important for stability and wear. Fluoroscopy can improve the accuracy of acetabular component placement in the posterior approach and the direct anterior approach (DAA). The purpose of this study was to determine if the direct anterior approach in the supine position facilitates the accurate use of fluoroscopy and improves acetabular component position.

Methods

This retrospective, comparative study of 60 THAs with fluoroscopic guidance (30 in posterior approach group and 30 in DAA group) was performed by one surgeon from 2012 to 2014 at a single institution. Demographic and perioperative data were compared using the Kolmogorov-Smirnov test to determine if they were statistically different. The difference between the measured intra-operative and postoperative values for both inclination and anteversion were analysed respectively.

Results

In the posterior approach group we found an average inclination on intra-operative fluoroscopy (IFluoro) of 36.8° ± 3.72°, an average anteversion on intra-operative fluoroscopy (AFluoro) of 25.6° ± 3.64°, an average inclination on postoperative standing AP pelvis X-ray (IAP X-ray) of 39.29° ± 4.58° and an average anteversion on postoperative standing AP pelvis X-ray (AAP X-ray) of 21.31° ± 4.04°. In the DAA group we found an average DAA IFluoro of 42.32° ± 1.91°, an average DAA AFluoro of 22.3° ± 1.41°, an average DAA IAP X-ray of 42.98° ± 1.81° and an average DAA AAP X-ray of 22.88° ± 1.38°. A difference was seen in variability using Kolmogorov-Smirnov test for inclination and anteversion with significant higher variation of measurements in the posterior approach group (p = 0.022 and p < 0.001 respectively). No statistically significant difference was seen in the DAA group using the fluoroscopy for inclination and anteversion.

Conclusion

Using fluoroscopy in the direct anterior approach, we achieved better intra-operative assessment of cup orientation resulting in decreased variability of acetabular cup anteversion than when used in the posterior approach. At least some of the improvement was due to the fact that the fluoroscopic image in the supine position was more accurate as measured against the postoperative standing AP pelvis. This study may influence the choice of approach in total hip replacement.

Keywords

Direct anterior approach (DAA) Posterior approach Fluoroscopy Acetabular component Inclination Anteversion 

Notes

Acknowledgments

The authors wish to thank Carol for the fluoroscopic image and the standing AP pelvis X-ray acquisition, and Shen Jing M.D., for assisting the statistical analysis.

References

  1. 1.
    Matta JM, Shahrdar C, Ferguson T (2005) Single-incision anterior approach for total hip arthroplasty on an orthopaedic table. Clin Orthop Relat Res 441:115–124PubMedCrossRefGoogle Scholar
  2. 2.
    Beamer BS, Morgan JH, Barr C, Weaver MJ, Vrahas MS (2014) Does fluoroscopy improve acetabular component placement in total hip arthroplasty? Clin Orthop Relat Res 472:3953–3962. doi: 10.1007/s11999-014-3944-8 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ryan JA, Jamali AA, Bargar WL (2010) Accuracy of computer navigation for acetabular component placement in THA. Clin Orthop Relat Res 468:169–177. doi: 10.1007/s11999-009-1003-7 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Nogler M, Mayr E, Krismer M, Thaler M (2008) Reduced variability in cup positioning: the direct anterior surgical approach using navigation. Acta Orthop 79:789–793. doi: 10.1080/17453670810016867 PubMedCrossRefGoogle Scholar
  5. 5.
    Nawabi DH, Conditt MA, Ranawat AS, Dunbar NJ, Jones J, Banks S, Padgett DE (2013) Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng H 227:302–309PubMedCrossRefGoogle Scholar
  6. 6.
    Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB (2014) Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res 472:329–336. doi: 10.1007/s11999-013-3253-7 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60:217–220PubMedGoogle Scholar
  8. 8.
    Jolles BM, Zangger P, Leyvraz PF (2002) Factors predisposing to dislocation after primary total hip arthroplasty: a multivariate analysis. J Arthroplasty 17:282–288PubMedCrossRefGoogle Scholar
  9. 9.
    Patil S, Bergula A, Chen PC, Colwell CW Jr, D’Lima DD (2003) Polyethylene wear and acetabular component orientation. J Bone Joint Surg Am 85-A(Suppl 4):56–63PubMedGoogle Scholar
  10. 10.
    Little NJ, Busch CA, Gallagher JA, Rorabeck CH, Bourne RB (2009) Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin Orthop Relat Res 467:2895–2900. doi: 10.1007/s11999-009-0845-3 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    De Haan R, Pattyn C, Gill HS, Murray DW, Campbell PA, De Smet K (2008) Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg (Br) 90:1291–1297. doi: 10.1302/0301-620X.90B10.20533 CrossRefGoogle Scholar
  12. 12.
    Langton DJ, Sprowson AP, Mahadeva D, Bhatnagar S, Holland JP, Nargol AV (2010) Cup anteversion in hip resurfacing: validation of EBRA and the presentation of a simple clinical grading system. J Arthroplasty 25:607–613. doi: 10.1016/j.arth.2009.08.020 PubMedCrossRefGoogle Scholar
  13. 13.
    Walter LR, Marel E, Harbury R, Wearne J (2008) Distribution of chromium and cobalt ions in various blood fractions after resurfacing hip arthroplasty. J Arthroplasty 23:814–821. doi: 10.1016/j.arth.2007.07.003 PubMedCrossRefGoogle Scholar
  14. 14.
    Langton DJ, Jameson SS, Joyce TJ, Webb J, Nargol AV (2008) The effect of component size and orientation on the concentrations of metal ions after resurfacing arthroplasty of the hip. J Bone Joint Surg (Br) 90:1143–1151. doi: 10.1302/0301-620X.90B9.20785 CrossRefGoogle Scholar
  15. 15.
    Meftah M, Yadav A, Wong AC, Ranawat AS, Ranawat CS (2013) A novel method for accurate and reproducible functional cup positioning in total hip arthroplasty. J Arthroplasty 28:1200–1205. doi: 10.1016/j.arth.2012.09.018 PubMedCrossRefGoogle Scholar
  16. 16.
    Inoue M, Majima T, Abe S, Nakamura T, Kanno T, Masuda T, Minami A (2013) Using the transverse acetabular ligament as a landmark for acetabular anteversion: an intra-operative measurement. J Orthop Surg (Hong Kong) 21:189–194Google Scholar
  17. 17.
    Epstein NJ, Woolson ST, Giori NJ (2011) Acetabular component positioning using the transverse acetabular ligament: can you find it and does it help? Clin Orthop Relat Res 469:412–416. doi: 10.1007/s11999-010-1523-1 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fujita K, Kabata T, Maeda T, Kajino Y, Iwai S, Kuroda K, Hasegawa K, Tsuchiya H (2014) The use of the transverse acetabular ligament in total hip replacement: an analysis of the orientation of the trial acetabular component using a navigation system. Bone Joint J 96-B:306–311. doi: 10.1302/0301-620X.96B3.32726 PubMedCrossRefGoogle Scholar
  19. 19.
    Zhu J, Wan Z, Dorr LD (2010) Quantification of pelvic tilt in total hip arthroplasty. Clin Orthop Relat Res 468:571–575. doi: 10.1007/s11999-009-1064-7 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Barrack RL, Krempec JA, Clohisy JC, McDonald DJ, Ricci WM, Ruh EL, Nunley RM (2013) Accuracy of acetabular component position in hip arthroplasty. J Bone Joint Surg Am 95:1760–1768. doi: 10.2106/JBJS.L.01704 PubMedCrossRefGoogle Scholar
  21. 21.
    Callanan MC, Jarrett B, Bragdon CR, Zurakowski D, Rubash HE, Freiberg AA, Malchau H (2011) The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res 469:319–329. doi: 10.1007/s11999-010-1487-1 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kennedy JG, Rogers WB, Soffe KE, Sullivan RJ, Griffen DG, Sheehan LJ (1998) Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplasty 13:530–534PubMedCrossRefGoogle Scholar
  23. 23.
    Conroy JL, Whitehouse SL, Graves SE, Pratt NL, Ryan P, Crawford RW (2008) Risk factors for revision for early dislocation in total hip arthroplasty. J Arthroplasty 23:867–872. doi: 10.1016/j.arth.2007.07.009 PubMedCrossRefGoogle Scholar
  24. 24.
    Rathod PA, Bhalla S, Deshmukh AJ, Rodriguez JA (2014) Does fluoroscopy with anterior hip arthroplasty decrease acetabular cup variability compared with a nonguided posterior approach? Clin Orthop Relat Res 472:1877–1885. doi: 10.1007/s11999-014-3512-2 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Widmer KH (2004) A simplified method to determine acetabular cup anteversion from plain radiographs. J Arthroplasty 19:387–390PubMedCrossRefGoogle Scholar
  26. 26.
    Nho JH, Lee YK, Kim HJ, Ha YC, Suh YS, Koo KH (2012) Reliability and validity of measuring version of the acetabular component. J Bone Joint Surg (Br) 94:32–36. doi: 10.1302/0301-620X.94B1.27621 CrossRefGoogle Scholar
  27. 27.
    Wera GD, Ting NT, Moric M, Paprosky WG, Sporer SM, Della Valle CJ (2012) Classification and management of the unstable total hip arthroplasty. J Arthroplasty 27:710–715. doi: 10.1016/j.arth.2011.09.010 PubMedCrossRefGoogle Scholar
  28. 28.
    Moskal JT, Capps SG (2011) Acetabular component positioning in total hip arthroplasty: an evidence-based analysis. J Arthroplasty 26:1432–1437. doi: 10.1016/j.arth.2010.11.011 PubMedCrossRefGoogle Scholar
  29. 29.
    Bicanic G, Delimar D, Delimar M, Pecina M (2009) Influence of the acetabular cup position on hip load during arthroplasty in hip dysplasia. Int Orthop 33:397–402. doi: 10.1007/s00264-008-0683-z PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW Jr (2000) The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am 82:315–321PubMedGoogle Scholar
  31. 31.
    Gandhi R, Marchie A, Farrokhyar F, Mahomed N (2009) Computer navigation in total hip replacement: a meta-analysis. Int Orthop 33:593–597. doi: 10.1007/s00264-008-0539-6 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Beckmann J, Stengel D, Tingart M, Gotz J, Grifka J, Luring C (2009) Navigated cup implantation in hip arthroplasty. Acta Orthop 80:538–544. doi: 10.3109/17453670903350073 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kwon MS, Kuskowski M, Mulhall KJ, Macaulay W, Brown TE, Saleh KJ (2006) Does surgical approach affect total hip arthroplasty dislocation rates? Clin Orthop Relat Res 447:34–38. doi: 10.1097/01.blo.0000218746.84494.df PubMedCrossRefGoogle Scholar
  34. 34.
    Bosker BH, Verheyen CC, Horstmann WG, Tulp NJ (2007) Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch Orthop Trauma Surg 127:375–379. doi: 10.1007/s00402-007-0294-y PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Myers GJ, Morgan D, McBryde CW, O’Dwyer K (2009) Does surgical approach influence component positioning with Birmingham Hip Resurfacing? Int Orthop 33:59–63. doi: 10.1007/s00264-007-0469-8 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dienstknecht T, Luring C, Tingart M, Grifka J, Sendtner E (2013) A minimally invasive approach for total hip arthroplasty does not diminish early post-operative outcome in obese patients: a prospective, randomised trial. Int Orthop 37:1013–1018. doi: 10.1007/s00264-013-1833-5 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jacquot F, Ait Mokhtar M, Sautet A, Doursounian L, Masquelet AC, Feron JM (2013) The mini postero-postero-lateral mini incision in total hip arthroplasty. Int Orthop 37:1891–1895. doi: 10.1007/s00264-013-1970-x PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reichert JC, Volkmann MR, Koppmair M, Rackwitz L, Ludemann M, Rudert M, Noth U (2015) Comparative retrospective study of the direct anterior and transgluteal approaches for primary total hip arthroplasty. Int Orthop. doi: 10.1007/s00264-015-2732-8 PubMedGoogle Scholar
  39. 39.
    Waldstein W, Merle C, Schmidt-Braekling T, Boettner F (2014) Does stem design influence component positioning in total hip arthroplasty using a minimal invasive posterolateral approach? Int Orthop 38:1347–1352. doi: 10.1007/s00264-014-2299-9 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2015

Authors and Affiliations

  1. 1.Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
  2. 2.China Academy of Chinese Medical Sciences Postdoctoral Research StationBeijingChina
  3. 3.Department of OrthopaedicsChippewa Valley Orthopaedics and Sports Medicine ClinicAltoonaUSA

Personalised recommendations