International Orthopaedics

, Volume 39, Issue 8, pp 1459–1464 | Cite as

Impact and alternative metrics for medical publishing: our experience with International Orthopaedics

  • Marius M. Scarlat
  • Andreas F. Mavrogenis
  • Marko Pećina
  • Marius Niculescu
Original Paper

Abstract

Purpose

This paper compares the traditional tools of calculation for a journal’s efficacy and visibility with the new tools that have arrived from the Internet, social media and search engines. The examples concern publications of orthopaedic surgery and in particular International Orthopaedics.

Methods and results

Until recently, the prestige of publications, authors or journals was evaluated by the number of citations using the traditional citation metrics, most commonly the impact factor. Over the last few years, scientific medical literature has developed exponentially. The Internet has dramatically changed the way of sharing and the speed of flow of medical information. New tools have allowed readers from all over the world to access information and record their experience. Web platforms such as Facebook® and Twitter® have allowed for inputs from the general public. Professional sites such as LinkedIn® and more specialised sites such as ResearchGate®, BioMed Central® and OrthoEvidence® have provided specific information on defined fields of science. Scientific and professional blogs provide free access quality information. Therefore, in this new era of advanced wireless technology and online medical communication, the prestige of a paper should also be evaluated by alternative metrics (altmetrics) that measure the visibility of the scientific information by collecting Internet citations, number of downloads, number of hits on the Internet, number of tweets and likes of scholarly articles by newspapers, blogs, social media and other sources of data.

Conclusions and discussion

This article provides insights into altmetrics and informs the reader about current tools for optimal visibility and citation of their work. It also includes useful information about the performance of International Orthopaedics and the bias between traditional publication metrics and the new alternatives.

Keywords

Impact factor Altmetrics Thomson Reuters SpringerLink® ResearchGate® OrthoEvidence® Downloads Eigenfactor™ Score Usage factor Scopus® Twitter® CWTS SNIP Science Citation Index Google® Scholar International Orthopaedics SICOT 

References

  1. 1.
    Rennie D (1998) The present state of medical journals. Lancet 352(Suppl II):SII18–SII22PubMedCrossRefGoogle Scholar
  2. 2.
    Sechrest RC (2010) The Internet and the physician-patient relationship. Clin Orthop Relat Res 468(10):2566–2571PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Moverley R, Rankin KS, McNamara I, Davidson DJ, Reed M, Sprowson AP (2013) Impact factors of orthopaedic journals between 2000 and 2010: trends and comparisons with other surgical specialties. Int Orthop 37(4):561–567PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Garfield E (1999) Journal impact factor: a brief review. CMAJ 161:979–980PubMedCentralPubMedGoogle Scholar
  5. 5.
    Garfield E (1955) Citation indexes to science: a new dimension in documentation through association of ideas. Science 122:108–111PubMedCrossRefGoogle Scholar
  6. 6.
    Hakkalamani S, Rawal A, Hennessy MS, Parkinson RW (2006) The impact factor of seven orthopaedic journals: factors influencing it. J Bone Joint Surg Br 88:159–162PubMedCrossRefGoogle Scholar
  7. 7.
    Kurmis AP (2003) Understanding the limitations of the journal impact factor. J Bone Joint Surg Am 85-A:2449–2454PubMedGoogle Scholar
  8. 8.
    Seglen PO (1997) Why the impact factor of journals should not be used for evaluating research. BMJ 314:498–502PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Siebelt M, Siebelt T, Pilot P, Bloem RM, Bhandari M, Poolman RW (2010) Citation analysis of orthopaedic literature; 18 major orthopaedic journals compared for impact factor and SCImago. BMC Musculoskelet Disord 11:4PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bergstrom CT, West JD (2008) Assessing citations with the Eigenfactor™ metrics. Neurology 71:1850–1851PubMedCrossRefGoogle Scholar
  11. 11.
    Bosker BH, Verheyen CCPM (2006) The international rank order of publications in major clinical orthopaedic journals from 2000 to 2004. J Bone Joint Surg Br 88:156–158PubMedCrossRefGoogle Scholar
  12. 12.
    Rossner M, Van Epps H, Hill E (2007) Show me the data. J Cell Biol 179(6):1091–1092PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Garfield E (1996) How can impact factors be improved? BMJ 313:411–413PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hemmingsson A, Mygind T, Skjennald A, Edgren J (2002) Manipulation of impact factors by editors of scientific journals. AJR Am J Roentgenol 178:767PubMedCrossRefGoogle Scholar
  15. 15.
    The PLoS Medicine Editors (2006) The impact factor game. It is time to find a better way to assess the scientific literature. PLoS Med 3:e291PubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mavrogenis AF, Ruggieri P, Papagelopoulos PJ (2010) Self-citation in publishing. Clin Orthop Relat Res 468(10):2803–2807PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Falagas ME, Kouranos VD, Arencibia-Jorge R, Karageorgopoulos DE (2008) Comparison of SCImago journal rank indicator with journal impact factor. FASEB J 22:2623–2628PubMedCrossRefGoogle Scholar
  18. 18.
    SCImago Research Group (2008) Description of SCImago Journal Rank Indicator. http://www.scimagojr.com/SCImagoJournalRank.pdf. Accessed 20 Jan 2008
  19. 19.
    Bergstrom CT, West JD, Wiseman MA (2008) The Eigenfactor™ metrics. J Neurosci 28(45):11433–11434PubMedCrossRefGoogle Scholar
  20. 20.
  21. 21.
    http://www.eigenfactor.org. Accessed 6 Apr 2010
  22. 22.
    de Solla Price DJ (1965) Networks of scientific papers. Science 30;149(3683):510–515Google Scholar
  23. 23.
  24. 24.
  25. 25.
    Haustein S, Peters I, Sugimoto CR, Thelwall M, Larivière V (2014) Tweeting biomedicine: an analysis of tweets and citations in the biomedical literature. J Assoc Inf Sci Technol 65:656–669CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Daniilidis KL, Tibesku CO (2013) Frontal plane alignment after total knee arthroplasty using patient-specific instruments. Int Orthop 37(1):45–50. doi:10.1007/s00264-012-1732-1 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Iwai TL, Tsuji S, Tomita T, Sugamoto K, Hideki Y, Hamada M (2013) Repeat-dose intravenous tranexamic acid further decreases blood loss in total knee arthroplasty. Int Orthop 37(3):441–445. doi:10.1007/s00264-013-1787-7 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Scarlat MM (2013) Complications with reverse total shoulder arthroplasty and recent evolutions. Int Orthop 37(5):843–851. doi:10.1007/s00264-013-1832-6 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Petersen W, Rembitzki IV, Brüggemann GP, Ellermann A, Best R, Koppenburg AG, Liebau C (2014) Anterior knee pain after total knee arthroplasty: a narrative review. Int Orthop 38(2):319–328. doi:10.1007/s00264-013-2081-4 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wei J, Song Y, Sun L, Lv C (2013) Comparison of artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials. Int Orthop 37(7):1315–1325. doi:10.1007/s00264-013-1883-8 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S (2013) Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop 37(12):2491–2498. doi:10.1007/s00264-013-2059-2 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pfeifer C, Müller M, Prantl L, Berner A, Dendorfer S, Englert C (2012) Cartilage labelling for mechanical testing in T-peel configuration. Int Orthop 36(7):1493–1499. doi:10.1007/s00264-011-1468-3 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Craik JD, Mallina R, Ramasamy V, Little NJ (2014) Human evolution and tears of the rotator cuff. Int Orthop 38(3):547–552. doi:10.1007/s00264-013-2204-y PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ferretti A, Valeo L, Mazza D, Muliere L, Iorio P, Giovannetti G, Conteduca F, Iorio R (2014) Smartphone versus knee ligament arthrometer when size does not matter. Int Orthop 38(10):2197–2199. doi:10.1007/s00264-014-2432-9 PubMedCrossRefGoogle Scholar
  36. 36.
    Pećina M (2015) International orthopaedics today. Int Orthop 39(3):381–382. doi:10.1007/s00264-014-2638-x PubMedCrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2015

Authors and Affiliations

  • Marius M. Scarlat
    • 1
    • 2
  • Andreas F. Mavrogenis
    • 3
  • Marko Pećina
    • 4
    • 2
  • Marius Niculescu
    • 5
  1. 1.Clinique Saint-MichelToulonFrance
  2. 2.International OrthopaedicsToulonFrance
  3. 3.First Department of OrthopaedicsAthens University Medical School, ATTIKON University HospitalAthensGreece
  4. 4.Croatian Academy of Sciences and ArtsZagrebCroatia
  5. 5.Titu Maiorescu Faculty of Medicine and FirstDepartment of Orthopaedics and Traumatology, Colentina University HospitalBucharestRomania

Personalised recommendations