Advertisement

International Orthopaedics

, Volume 39, Issue 9, pp 1737–1742 | Cite as

Periprosthetic supracondylar femoral fractures following knee arthroplasty: a biomechanical comparison of four methods of fixation

  • Tatu J. Mäkinen
  • Herman S. Dhotar
  • Simcha G. Fichman
  • Matthew J. Gunton
  • Mitchell Woodside
  • Oleg Safir
  • David Backstein
  • Thomas L. Willett
  • Paul R. T. Kuzyk
Original Paper

Abstract

Purpose

The aim of this study was to determine the biomechanical properties of four fixation options for periprosthetic supracondylar femoral fractures.

Methods

Fourth-generation composite femurs were implanted with a posterior-stabilizing femoral component of total knee arthroplasty. All femurs were osteotomized to produce a AO/OTA 33-A3 fracture pattern and four different constructs were tested: (1) non-locking plate; (2) polyaxial locking plate; (3) intramedullary fibular strut allograft with polyaxial locking plate; (4) retrograde intramedullary nail. The composite femurs underwent non-destructive tests to determine construct stiffness in axial and torsional cyclic loading. The final testing consisted of quasi-static axial loading until failure.

Results

Under cyclic torsional loading, the retrograde intramedullary nail was less stiff than non-locking plate, polyaxial locking plate and intramedullary fibular strut allograft with polyaxial locking plate (p = 0.046). No differences were detected in cyclic axial loading between the different constructs. During quasi-static axial loading to failure, the intramedullary nail achieved the highest axial stiffness while the non-locking plate showed the lowest (p = 0.036).

Conclusions

The intramedullary fibular strut allograft with polyaxial locking plate did not prove to be significantly better to the polyaxial locking plate only in a periprosthetic distal femur fracture model.

Keywords

Periprosthetic fracture Total knee arthroplasty Locked plate Intramedullary nail Allograft 

Notes

Acknowledgments

H. S. Dhotar, M. Woodside, T. L. Willett and P. R. T. Kuzyk have received funding from the Orthopaedic Research and Education Foundation Young Investigators Grant. All the implants used in this study were provided by Zimmer Inc.

Conflicts of interest

The authors state there are no conflicts of interest.

References

  1. 1.
    Kurtz SM, Ong KL, Lau E, Bozic KJ (2014) Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am 96:624–630CrossRefPubMedGoogle Scholar
  2. 2.
    Della Rocca GJ, Leung KS, Pape HC (2011) Periprosthetic fractures: epidemiology and future projections. J Orthop Trauma 25(Suppl 2):S66–S70CrossRefPubMedGoogle Scholar
  3. 3.
    Ricci WM, Borrelli J Jr (2007) Operative management of periprosthetic femur fractures in the elderly using biological fracture reduction and fixation techniques. Injury 38:S53–S58CrossRefPubMedGoogle Scholar
  4. 4.
    Kancherla VK, Nwachuku CO (2014) The treatment of periprosthetic femur fractures after total knee arthroplasty. Orthop Clin North Am 45:457–467CrossRefPubMedGoogle Scholar
  5. 5.
    Kim KI, Egol KA, Hozack WJ, Parvizi J (2006) Periprosthetic fractures after total knee arthroplasties. Clin Orthop Relat Res 446:167–175CrossRefPubMedGoogle Scholar
  6. 6.
    Srinivasan K, Macdonald DA, Tzioupis CC, Giannoudis PV (2005) Role of long stem revision knee prosthesis in periprosthetic and complex distal femoral fractures: a review of eight patients. Injury 36:1094–1102CrossRefPubMedGoogle Scholar
  7. 7.
    Saidi K, Ben-Lulu O, Tsuji M, Safir O, Gross AE, Backstein D (2014) Supracondylar periprosthetic fractures of the knee in the elderly patients: a comparison of treatment using allograft implant composites, standard revision components, distal femoral replacement prosthesis. J Arthroplasty 29:110–114CrossRefPubMedGoogle Scholar
  8. 8.
    Jassim SS, McNamara I, Hopgood P (2014) Distal femoral replacement in periprosthetic fracture around total knee arthroplasty. Injury 45:550–553CrossRefPubMedGoogle Scholar
  9. 9.
    Berkes MB, Little MT, Lazaro LE, Cymerman RM, Pardee NC, Helfet DL, Dines JS, Lorich DG (2014) Intramedullary allograft fibula as a reduction and fixation tool for treatment of complex proximal humerus fractures with diaphyseal extension. J Orthop Trauma 28:e56–e64CrossRefPubMedGoogle Scholar
  10. 10.
    Ebraheim NA, Sabry FF, Elgafy H (2002) Intramedullary fibular allograft and nail for treatment of femoral shaft nonunion. Am J Orthop (Belle Mead NJ) 31:270–272Google Scholar
  11. 11.
    Elgafy H, Ebraheim NA, Bach HG (2011) Revision internal fixation and nonvascular fibular graft for femoral neck nonunion. J Trauma 70:169–173CrossRefPubMedGoogle Scholar
  12. 12.
    Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing–an update. Injury 38(Suppl 1):S3–S10CrossRefPubMedGoogle Scholar
  13. 13.
    Kumar A, Chambers I, Maistrelli G, Wong P (2008) Management of periprosthetic fracture above total knee arthroplasty using intramedullary fibular allograft and plate fixation. J Arthroplasty 23:554–558CrossRefPubMedGoogle Scholar
  14. 14.
    Chen SH, Chiang MC, Hung CH, Lin SC, Chang HW (2014) Finite element comparison of retrograde intramedullary nailing and locking plate fixation with/without an intramedullary allograft for distal femur fracture following total knee arthroplasty. Knee 21:224–231CrossRefPubMedGoogle Scholar
  15. 15.
    Mathison C, Chaudhary R, Beaupre L, Reynolds M, Adeeb S, Bouliane M (2010) Biomechanical analysis of proximal humeral fixation using locking plate fixation with an intramedullary fibular allograft. Clin Biomech (Bristol, Avon) 25:642–646CrossRefGoogle Scholar
  16. 16.
    Osterhoff G, Baumgartner D, Favre P, Wanner GA, Gerber H, Simmen HP, Werner CM (2011) Medial support by fibula bone graft in angular stable plate fixation of proximal humeral fractures: an in vitro study with synthetic bone. J Shoulder Elbow Surg 20:740–746CrossRefPubMedGoogle Scholar
  17. 17.
    Zlowodzki M, Williamson S, Cole PA, Zardiackas LD, Kregor PJ (2004) Biomechanical evaluation of the less invasive stabilization system, angled blade plate, and retrograde intramedullary nail for the internal fixation of distal femur fractures. J Orthop Trauma 18:494–502CrossRefPubMedGoogle Scholar
  18. 18.
    Pekmezci M, McDonald E, Buckley J, Kandemir U (2014) Retrograde intramedullary nails with distal screws locked to the nail have higher fatigue strength than locking plates in the treatment of supracondylar femoral fractures: A cadaver-based laboratory investigation. Bone Joint J 96-B:114–121CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmadi S, Shah S, Wunder JS, Schemitsch EH, Ferguson PC, Zdero R (2013) The biomechanics of three different fracture fixation implants for distal femur repair in the presence of a tumor-like defect. Proc Inst Mech Eng H 227:78–86CrossRefPubMedGoogle Scholar
  20. 20.
    Salas C, Mercer D, DeCoster TA, Reda Taha MM (2011) Experimental and probabilistic analysis of distal femoral periprosthetic fracture: a comparison of locking plate and intramedullary nail fixation. Part A: experimental investigation. Comput Methods Biomech Biomed Engin 14:157–164CrossRefPubMedGoogle Scholar
  21. 21.
    Hanschen M, Aschenbrenner IM, Fehske K, Kirchhoff S, Keil L, Holzapfel BM, Winkler S, Fuechtmeier B, Neugebauer R, Luehrs S, Liener U, Biberthaler P (2014) Mono- versus polyaxial locking plates in distal femur fractures: a prospective randomized multicentre clinical trial. Int Orthop 38:857–863PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Tejwani NC, Park S, Iesaka K, Kummer F (2005) The effect of locked distal screws in retrograde nailing of osteoporotic distal femur fractures: a laboratory study using cadaver femurs. J Orthop Trauma 19:380–383CrossRefPubMedGoogle Scholar
  23. 23.
    Herrera DA, Kregor PJ, Cole PA, Levy BA, Jönsson A, Zlowodzki M (2008) Treatment of acute distal femur fractures above a total knee arthroplasty: systematic review of 415 cases (1981–2006). Acta Orthop 79:22–27CrossRefPubMedGoogle Scholar
  24. 24.
    Gliatis J, Megas P, Panagiotopoulos E, Lambiris E (2005) Midterm results of treatment with a retrograde nail for supracondylar periprosthetic fractures of the femur following total knee arthroplasty. J Orthop Trauma 19:164–170CrossRefPubMedGoogle Scholar
  25. 25.
    Lehmann W, Rupprecht M, Nuechtern J, Melzner D, Sellenschloh K, Kolb J, Fensky F, Hoffmann M, Püschel K, Morlock M, Rueger JM (2012) What is the risk of stress risers for interprosthetic fractures of the femur? A biomechanical analysis. Int Orthop 36:2441–2446PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Horneff JG 3rd, Scolaro JA, Jafari SM, Mirza A, Parvizi J, Mehta S (2013) Intramedullary nailing versus locked plate for treating supracondylar periprosthetic femur fractures. Orthopedics 36:e561–e566CrossRefPubMedGoogle Scholar
  27. 27.
    Davison BL (2003) Varus collapse of comminuted distal femur fractures after open reduction and internal fixation with a lateral condylar buttress plate. Am J Orthop (Belle Mead NJ) 32:27–30Google Scholar

Copyright information

© SICOT aisbl 2015

Authors and Affiliations

  • Tatu J. Mäkinen
    • 1
  • Herman S. Dhotar
    • 1
  • Simcha G. Fichman
    • 1
  • Matthew J. Gunton
    • 1
  • Mitchell Woodside
    • 2
  • Oleg Safir
    • 1
  • David Backstein
    • 1
  • Thomas L. Willett
    • 2
  • Paul R. T. Kuzyk
    • 1
  1. 1.Mount Sinai Hospital, Division of Orthopaedic SurgeryUniversity of TorontoTorontoCanada
  2. 2.Materials Science and Engineering, Institute of Biomaterials and BioMedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations