International Orthopaedics

, Volume 39, Issue 6, pp 1237–1243 | Cite as

Calcitonin gene-related peptide can be selected as a predictive biomarker on progression and prognosis of knee osteoarthritis

  • Tianhua Dong
  • Heping Chang
  • Fei Zhang
  • Wei Chen
  • Yanbin Zhu
  • Tao Wu
  • Yingze Zhang
Original Paper



The purpose of this study was to examine calcitonin gene-related peptide (CGRP) concentrations in serum and synovial fluid of patients with primary knee osteoarthritis (OA) and healthy controls and to explore their relationship with clinical and radiographic severity of OA.


Sixty-five patients with primary knee OA and 21 healthy controls were recruited. CGRP concentrations in the serum and synovial fluid were measured using enzyme-linked immunosorbent assays. The radiographic severity of OA was evaluated using the Kellgren and Lawrence (KL) classification. The Western Ontario and McMaster University Osteoarthritis Index (WOMAC) was used to assess pain, stiffness and physical function.


Serum and synovial fluid CGRP concentrations tended to be higher with the increase in KL grades (r = 0.565 and r = 0.441, P < 0.001, respectively), and were significantly positively correlated with KL grades, total WOMAC score and each subscale (pain, stiffness and physical function).


The result demonstrated that CGRP in serum and synovial fluid was related to progressive joint damage in knee OA. CGRP can be selected as a biomarker for monitoring disease severity and could be a predictive role on prognosis and progression of knee OA.


Calcitonin gene-related peptide Knee osteoarthritis Serum Synovial fluid 


  1. 1.
    Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21:16–21PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28:5–15PubMedCrossRefGoogle Scholar
  3. 3.
    Melikoglu M, Yildirim K, Senel K (2009) Relationship between radiographic grading of osteoarthritis and serum beta-2 microglobulin. Ir J Med Sci 178:151–154PubMedCrossRefGoogle Scholar
  4. 4.
    Mohammed FI, Abd El-Azeem MI, KamalElDin AM (2012) Plasma and synovial fluid osteopontin levels in patients with knee osteoarthritis: relation to radiological grade. Egypt Rheumatol 34:131–136CrossRefGoogle Scholar
  5. 5.
    Sun JM, Sun LZ, Liu J, Su BH, Shi L (2013) Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. Dis Markers 35:203–206PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Honsawek S, Tanavalee A, Sakdinakiattikoon M, Chayanupatkul M, Yuktanandana P (2009) Correlation of plasma and synovial fluid osteopontin with disease severity in knee osteoarthritis. Clin Biochem 42:808–812PubMedCrossRefGoogle Scholar
  7. 7.
    Honsawek S, Chayanupatkul M, Tanavalee A, Sakdinakiattikoon M, Deepaisarnsakul B, Yuktanandana P, Ngarmukos S (2009) Relationship of plasma and synovial fluid BMP-7 with disease severity in knee osteoarthritis patients: a pilot study. Int Orthop 33:1171–1175PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bellucci F, Meini S, Cucchi P, Catalani C, Nizzardo A, Riva A, Guidelli GM, Ferrata P, Fioravanti A, Maggi CA (2013) Synovial fluid levels of bradykinin correlate with biochemical markers for cartilage degradation and inflammation in knee osteoarthritis. Osteoarthritis Cartilage 21:1774–1780PubMedCrossRefGoogle Scholar
  9. 9.
    Wang Y, Xu D, Long L, Deng X, Tao R, Huang G (2014) Correlation between plasma, synovial fluid and articular cartilage Interleukin-18 with radiographic severity in 33 patients with osteoarthritis of the knee. Clin Exp Med 14:297–304PubMedCrossRefGoogle Scholar
  10. 10.
    Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42PubMedCrossRefGoogle Scholar
  11. 11.
    Russell FA, King R, Smillie SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94:1099–1142PubMedCrossRefGoogle Scholar
  12. 12.
    Saito T, Koshino T (2000) Distribution of neuropeptides in synovium of the knee with osteoarthritis. Clin Orthop Relat Res (376):172–182Google Scholar
  13. 13.
    Bowler KE, Worsley MA, Broad L, Sher E, Benschop R, Johnson K, Yates JM, Robinson PP, Boissonade FM (2013) Evidence for anti-inflammatory and putative analgesic effects of a monoclonal antibody to calcitonin gene-related peptide. Neuroscience 228:271–282PubMedCrossRefGoogle Scholar
  14. 14.
    Raap T, Justen HP, Miller LE, Cutolo M, Scholmerich J, Straub RH (2000) Neurotransmitter modulation of interleukin 6 (IL-6) and IL-8 secretion of synovial fibroblasts in patients with rheumatoid arthritis compared to osteoarthritis. J Rheumatol 27:2558–2565PubMedGoogle Scholar
  15. 15.
    Hernanz A, Medina S, de Miguel E, Martı́n-Mola E (2003) Effect of calcitonin gene-related peptide, neuropeptide Y, substance P, and vasoactive intestinal peptide on interleukin-1β, interleukin-6 and tumor necrosis factor-alpha production by peripheral whole blood cells from rheumatoid arthritis and osteoarthritis patients. Regul Pept 115:19–24PubMedCrossRefGoogle Scholar
  16. 16.
    Yaraee R, Ebtekar M, Ahmadiani A, Sabahi F (2003) Neuropeptides (SP and CGRP) augment pro-inflammatory cytokine production in HSV-infected macrophages. Int Immunopharmacol 3:1883–1887PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang L, Hoff AO, Wimalawansa SJ, Cote GJ, Gagel RF, Westlund KN (2001) Arthritic calcitonin/α calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity. Pain 89:265–273PubMedCrossRefGoogle Scholar
  18. 18.
    Bullock CM, Wookey P, Bennett A, Mobasheri A, Dickerson I, Kelly S (2014) Peripheral calcitonin gene-related peptide receptor activation and mechanical sensitization of the joint in rat models of osteoarthritis pain. Arthrit Rheumatol 66:2188–2200CrossRefGoogle Scholar
  19. 19.
    Fernihough J, Gentry C, Bevan S, Winter J (2005) Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett 388:75–80PubMedCrossRefGoogle Scholar
  20. 20.
    Kellegren J, Lawrence J (1957) Radiological assessment of osteoarthritis. Ann Rheum Dis 16:494–501CrossRefGoogle Scholar
  21. 21.
    Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840PubMedGoogle Scholar
  22. 22.
    Chen G, Hao J, Xi Y, Wang W, Wang Z, Li N, Li W (2008) The therapeutic effect of vasoactive intestinal peptide on experimental arthritis is associated with CD4+CD25+ T regulatory cells. Scand J Immunol 68:572–578PubMedCrossRefGoogle Scholar
  23. 23.
    Požgan U, Caglič D, Rozman B, Nagase H, Turk V, Turk B (2010) Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 391:571–579PubMedGoogle Scholar
  24. 24.
    Ayral X, Pickering E, Woodworth T, Mackillop N, Dougados M (2005) Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13:361–367PubMedCrossRefGoogle Scholar
  25. 25.
    Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5:77–94PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Zhou SJ, Sun ZX, Liu J (2013) Neopterin concentrations in synovial fluid may reflect disease severity in patients with osteoarthritis. Scand J Clin Lab Invest 73:344-348Google Scholar
  27. 27.
    Liu M, Hu C (2012) Association of MIF in serum and synovial fluid with severity of knee osteoarthritis. Clin Biochem 45:737–739PubMedCrossRefGoogle Scholar
  28. 28.
    Scrivo R, Conigliaro P, Riccieri V, Di Franco M, Alessandri C, Spadaro A, Perricone R, Valesini G (2015) Distribution of interleukin-10 family cytokines in serum and synovial fluid of patients with inflammatory arthritis reveals different contribution to systemic and joint inflammation. Clin Exp Immunol 179:300–308PubMedCrossRefGoogle Scholar
  29. 29.
    Mabey T, Honsawek S, Saetan N, Poovorawan Y, Tanavalee A, Yuktanandana P (2014) Angiogenic cytokine expression profiles in plasma and synovial fluid of primary knee osteoarthritis. Int Orthop 38:1885–1892PubMedCrossRefGoogle Scholar
  30. 30.
    Honsawek S, Yuktanandana P, Tanavalee A, Chirathaworn C, Anomasiri W, Udomsinprasert W, Saetan N, Suantawee T, Tantavisut S (2012) Plasma and synovial fluid connective tissue growth factor levels are correlated with disease severity in patients with knee osteoarthritis. Biomarkers 17:303–308PubMedCrossRefGoogle Scholar
  31. 31.
    Bullock CM, Kelly S (2013) Calcitonin gene-related peptide receptor antagonists: beyond migraine pain—a possible analgesic strategy for osteoarthritis? Curr Pain Headache Rep 17:375PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Haseeb A, Haqqi TM (2013) Immunopathogenesis of osteoarthritis. Clin Immunol 146:185–196PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Dallos A, Kiss M, Polyanka H, Dobozy A, Kemeny L, Husz S (2006) Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides 40:251–263PubMedCrossRefGoogle Scholar
  34. 34.
    Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U, Poole AR (2005) Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage. Arthrit Rheuma 52:128–135CrossRefGoogle Scholar
  35. 35.
    Inoue K, Masuko-Hongo K, Okamoto M, Nishioka K (2005) Induction of vascular endothelial growth factor and matrix metalloproteinase-3 (stromelysin) by interleukin-1 in human articular chondrocytes and synoviocytes. Rheumatol Int 26:93–98PubMedCrossRefGoogle Scholar
  36. 36.
    Rowan A, Koshy P, Shingleton W, Degnan B, Heath J, Vernallis A, Spaull J, Life P, Hudson K, Cawston T (2001) Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. Arthrit Rheuma 44:1620–1632CrossRefGoogle Scholar
  37. 37.
    Saxler G, Loer F, Skumavc M, Pfortner J, Hanesch U (2007) Localization of SP- and CGRP-immunopositive nerve fibers in the hip joint of patients with painful osteoarthritis and of patients with painless failed total hip arthroplasties. Eur J Pain 11:67–74PubMedCrossRefGoogle Scholar
  38. 38.
    Benschop RJ, Collins EC, Darling RJ, Allan BW, Leung D, Conner EM, Nelson J, Gaynor B, Xu J, Wang XF, Lynch RA, Li B, McCarty D, Oskins JL, Lin C, Johnson KW, Chambers MG (2014) Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthritis Cartilage 22:578–585PubMedCrossRefGoogle Scholar
  39. 39.
    Bigal ME, Walter S, Rapoport AM (2013) Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache 53:1230–1244PubMedCrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2015

Authors and Affiliations

  • Tianhua Dong
    • 1
    • 2
  • Heping Chang
    • 1
    • 2
  • Fei Zhang
    • 1
    • 2
  • Wei Chen
    • 1
    • 2
  • Yanbin Zhu
    • 1
    • 2
  • Tao Wu
    • 1
    • 2
  • Yingze Zhang
    • 1
    • 2
  1. 1.Key Laboratory of Biomechanics of Hebei ProvinceShijiazhuangPeople’s Republic of China
  2. 2.Department of Orthopaedic SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations