International Orthopaedics

, Volume 39, Issue 5, pp 981–988 | Cite as

Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model

  • Christian Fölsch
  • Maike Federmann
  • Klaus D. Kuehn
  • Clemens Kittinger
  • Stefan Kogler
  • Gernot Zarfel
  • Martina Kerwat
  • Steve Braun
  • Susanne Fuchs-Winkelmann
  • Jürgen R. J. Paletta
  • Philip P. RoesslerEmail author
Original Paper



Implant-associated osteomyelitis still represents a demanding challenge due to unfavourable biological conditions, bacterial properties and incremental resistance to antibiotic treatment. Therefore different bactericide or bacteriostatic implant coatings have been developed recently to control local intramedullary infections. Controlled local release of gentamicin base from a highly lipophilic gentamicin palmitate compound achieves extended intramedullary retention times and thus may improve its bactericide effect.


Forty male Sprague-Dawley rats were divided into two groups receiving an intramedullary femoral injection of 102 colony-forming units (CFU) of a common methicillin susceptible Staphylococcus aureus strain (MSSA Rosenbach) and either an uncoated femur nail (Group I) or a nail coated with gentamicin palmitate (Group II). Animals were observed for 28 and 42 days. Serum haptoglobin and relative weight gain were assessed as well as rollover cultures of explanted femur nails and histological scores of periprosthetic infection in dissected femurs.


Implants coated with gentamicin palmitate significantly reduced periprosthetic bacterial growth as well as signs of systemic inflammation compared with uncoated implants.


Gentamicin palmitate appears to be a viable coating for the prevention of implant-associated infections. These findings will have to be confirmed in larger animal models as well as in clinical trials.


Osteomyelitis Rat model Gentamicin palmitate Coated implants Staphylococcus aureus 



The present study was supported by Synthes GmbH, Umkirch, Germany. The authors thank Mr. Guido Schemken and his staff at the Central Animal Housing Facility in Marburg, as well as Prof. Dr. Markus Schofer and Dr. Stefan Lakemeier for their kind support in performing this study.

Conflict of interest

All authors declare that there is no conflict of interest.


  1. 1.
    Uçkay I, Jugun K, Gamulin A et al (2012) Chronic osteomyelitis. Curr Infect Dis Rep 14:566–575CrossRefPubMedGoogle Scholar
  2. 2.
    Li G-Q, Guo F-F, Ou Y et al (2013) Epidemiology and outcomes of surgical site infections following orthopedic surgery. Am J Infect Control 41:1268–1271CrossRefPubMedGoogle Scholar
  3. 3.
    Chang Y, Tai C-L, Hsieh P-H, Ueng SWN (2013) Gentamicin in bone cement: a potentially more effective prophylactic measure of infectionin joint arthroplasty. Bone Joint Res 2:220–226CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Seghrouchni K, van Delden C, Dominguez D et al (2012) Remission after treatment of osteoarticular infections due to Pseudomonas aeruginosa versus Staphylococcus aureus: a case-controlled study. Int Orthop 36:1065–1071CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Schmidmaier G, Lucke M, Wildemann B et al (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(Suppl 2):S105–S112CrossRefPubMedGoogle Scholar
  6. 6.
    Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364:369–379CrossRefPubMedGoogle Scholar
  7. 7.
    Rod-Fleury T, Dunkel N, Assal M et al (2011) Duration of post-surgical antibiotic therapy for adult chronic osteomyelitis: a single-centre experience. Int Orthop 35:1725–1731CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Betz M, Abrassart S, Vaudaux P et al (2014) Increased risk of joint failure in hip prostheses infected with Staphylococcus aureus treated with debridement, antibiotics and implant retention compared to Streptococcus. Int Orthop. doi: 10.1007/s00264-014-2510-z Google Scholar
  9. 9.
    Antoci V, Adams CS, Parvizi J et al (2008) The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 29:4684–4690CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Joosten U, Joist A, Gosheger G et al (2005) Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials 26:5251–5258CrossRefPubMedGoogle Scholar
  11. 11.
    Dion A, Langman M, Hall G, Filiaggi M (2005) Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials 26:7276–7285CrossRefPubMedGoogle Scholar
  12. 12.
    Kittinger C, Marth E, Windhager R et al (2011) Antimicrobial activity of gentamicin palmitate against high concentrations of Staphylococcus aureus. J Mater Sci Mater Med 22:1447–1453CrossRefPubMedGoogle Scholar
  13. 13.
    Gracia E, Laclériga A, Monzón M et al (1998) Application of a rat osteomyelitis model to compare in vivo and in vitro the antibiotic efficacy against bacteria with high capacity to form biofilms. J Surg Res 79:146–153CrossRefPubMedGoogle Scholar
  14. 14.
    Ozturk AM, Tabak AY, Aktekin CN et al (2008) Alendronate enhances antibiotic-impregnated bone grafts in the treatment of osteomyelitis. Int Orthop 32:821–827CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Fassbender M, Minkwitz S, Kronbach Z et al (2013) Local gentamicin application does not interfere with bone healing in a rat model. Bone 55:298–304CrossRefPubMedGoogle Scholar
  16. 16.
    Matl FD, Obermeier A, Repmann S et al (2008) New anti-infective coatings of medical implants. Antimicrob Agents Chemother 52:1957–1963CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Lucke M, Schmidmaier G, Sadoni S et al (2003) A new model of implant-related osteomyelitis in rats. J Biomed Mater Res B Appl Biomater 67:593–602CrossRefPubMedGoogle Scholar
  18. 18.
    Vogt S, Kühn K-D, Gopp U, Schnabelrauch M (2005) Resorbable antibiotic coatings for bone substitutes and implantable devices. Materwiss Werksttech 36:814–819CrossRefGoogle Scholar
  19. 19.
    Heller DN, Peggins JO, Nochetto CB et al (2005) LC/MS/MS measurement of gentamicin in bovine plasma, urine, milk, and biopsy samples taken from kidneys of standing animals. J Chromatogr B Anal Technol Biomed Life Sci 821:22–30CrossRefGoogle Scholar
  20. 20.
    Cowan ST, Shaw C, Williams RE (1954) Type strain for Staphylococcus aureus Rosenbach. J Gen Microbiol 10:174–176CrossRefPubMedGoogle Scholar
  21. 21.
    Giffen PS, Turton J, Andrews CM et al (2003) Markers of experimental acute inflammation in the wistar han rat with particular reference to haptoglobin and C-reactive protein. Arch Toxicol 77:392–402CrossRefPubMedGoogle Scholar
  22. 22.
    Welch JM, Weaver CM, Turner CH (2004) Adaptations to free-fall impact are different in the shafts and bone ends of rat forelimbs. J Appl Physiol 97:1859–1865CrossRefPubMedGoogle Scholar
  23. 23.
    Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595CrossRefPubMedGoogle Scholar
  24. 24.
    Lewis CS, Supronowicz PR, Zhukauskas RM et al (2012) Local antibiotic delivery with demineralized bone matrix. Cell Tissue Bank 13:119–127CrossRefPubMedGoogle Scholar
  25. 25.
    Hanssen AD (2005) Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res 437:91–96CrossRefPubMedGoogle Scholar
  26. 26.
    Lucke M, Schmidmaier G, Sadoni S et al (2003) Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32:521–531CrossRefPubMedGoogle Scholar
  27. 27.
    Lewis CS, Katz J, Baker MI et al (2011) Local antibiotic delivery with bovine cancellous chips. J Biomater Appl 26:491–506CrossRefPubMedGoogle Scholar
  28. 28.
    Joosten U, Joist A, Frebel T et al (2004) Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: studies in vitro and in vivo. Biomaterials 25:4287–4295CrossRefPubMedGoogle Scholar
  29. 29.
    Cornell CN, Tyndall D, Waller S et al (1993) Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft substitute. J Orthop Res 11:619–626CrossRefPubMedGoogle Scholar
  30. 30.
    Hamanishi C, Kitamoto K, Tanaka S et al (1996) A self-setting TTCP-DCPD apatite cement for release of vancomycin. J Biomed Mater Res 33:139–143CrossRefPubMedGoogle Scholar
  31. 31.
    Lucke M, Wildemann B, Sadoni S et al (2005) Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone 36:770–778CrossRefPubMedGoogle Scholar
  32. 32.
    Helbig L, Simank HG, Lorenz H et al (2014) Establishment of a new methicillin resistant Staphylococcus aureus animal model of osteomyelitis. Int Orthop 38:891–897CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2014

Authors and Affiliations

  • Christian Fölsch
    • 1
  • Maike Federmann
    • 1
  • Klaus D. Kuehn
    • 3
  • Clemens Kittinger
    • 4
  • Stefan Kogler
    • 3
  • Gernot Zarfel
    • 4
  • Martina Kerwat
    • 5
  • Steve Braun
    • 6
  • Susanne Fuchs-Winkelmann
    • 1
  • Jürgen R. J. Paletta
    • 1
  • Philip P. Roessler
    • 1
    • 2
    Email author
  1. 1.Department of Orthopaedics and RheumatologyUniversity Hospital MarburgMarburgGermany
  2. 2.Department of Orthopaedics and TraumatologyUniversity Hospital BonnBonnGermany
  3. 3.Department of Orthopaedics and Orthopaedic SurgeryMedical University of GrazGrazAustria
  4. 4.Institute of Hygiene, Microbiology and Environmental MedicineMedical University of GrazGrazAustria
  5. 5.Institute of Medical Microbiology and HygienePhilipps-University MarburgMarburgGermany
  6. 6.Department of Diagnostic and Interventional RadiologyUniversity Hospital MarburgMarburgGermany

Personalised recommendations