Advertisement

International Orthopaedics

, Volume 39, Issue 6, pp 1181–1186 | Cite as

The predictive effect of anatomic femoral and tibial graft tunnel placement in posterior cruciate ligament reconstruction on functional and radiological outcome

  • Michael Osti
  • Doris Hierzer
  • Alessa Krawinkel
  • Thomas Hoffelner
  • Karl Peter Benedetto
Original Paper

Abstract

Purpose

Biomechanical reports have advocated anatomic graft tunnel placement for reconstruction of the posterior cruciate ligament (PCL) to restore knee joint stability and facilitate optimal functional outcome. However, in vivo investigations that correlate tunnel position to functional results are lacking so far. This study evaluates the anatomic accuracy of femoral and tibial tunnel apertures on postoperative computed tomography (CT) scans and compares these findings to subjective and objective clinical outcome parameters.

Methods

After single-bundle PCL reconstruction, 29 patients were stratified into several subgroups according to the anatomic accuracy of femoral and tibial tunnel apertures measured on postoperative CT scans. A threshold value for the centres of the tunnel apertures was determined using a measurement grid system as a radiographic reference. To evaluate the functional and radiological results, visual analogue scale, International Knee Documentation Committee (IKDC), Tegner, Lysholm, Knee Injury and Osteoarthritis Outcome Score and osteoarthritis scores were obtained.

Results

Comparison between functional outcome and tunnel position yielded a statistically significant difference for subjective IKDC score and angle segment α and for objective stability and tunnel position P3 but no statistically significant difference with respect to intercondylar depth, intercondylar height and tibial tunnel position P2. No correlation was found between anatomic tunnel position and present or progressive osteoarthritis on follow-up. Of the patients, 72 % classified their result as excellent and good and 90 % would repeat surgical treatment.

Conclusions

Despite a small sample size and subject to the threshold values we used, our data indicate a potentially minor effect of anatomic tunnel placement on midterm functional outcome following PCL reconstruction.

Keywords

PCL reconstruction Functional result Anatomic tunnel position Correlation 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adler T, Friederich NF, Amsler F, Müller W, Hirschmann MT (2014) Clinical and radiological long-term outcome after posterior cruciate ligament reconstruction and nonanatomical popliteus bypass. Int Orthop 2014 Sep 17. [Epub ahead of print]Google Scholar
  2. 2.
    Amis AA, Gupte CM, Bull AMJ, Edwards A (2006) Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 14:257–263PubMedCrossRefGoogle Scholar
  3. 3.
    Apsingi S, Nguyen T, Bull AM, Unwin A, Deehan DJ, Amis AA (2008) Control of laxity in knees with combined posterior cruciate ligament and posterolateral corner deficiency: comparison of single-bundle versus double-bundle posterior cruciate ligament reconstruction combined with modified Larson posterolateral corner reconstruction. Am J Sports Med 36:487–494PubMedCrossRefGoogle Scholar
  4. 4.
    Benedetto KP, Hoffelner T, Osti M (2014) The biomechanical characteristics of arthroscopic tibial inlay techniques for posterior cruciate ligament reconstruction: in vitro comparison of tibial graft tunnel placement. Int Orthop 2014 Jul 22. [Epub ahead of print]Google Scholar
  5. 5.
    Bergfeld JA, McAllister DR, Parker RD, Valdevit AD, Kambic HE (2001) A biomechanical comparison of posterior cruciate ligament reconstruction techniques. Am J Sports Med 29:129–136PubMedGoogle Scholar
  6. 6.
    Bergfeld JA, Graham SM, Parker RD, Valdevit AD, Kambic HE (2005) A biomechanical comparison of posterior cruciate ligament reconstructions using single- and double-bundle tibial inlay techniques. Am J Sports Med 33:976–981PubMedCrossRefGoogle Scholar
  7. 7.
    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21PubMedGoogle Scholar
  8. 8.
    Boutefnouchet T, Bentayeb M, Qadri Q, Ali S (2013) Long-term outcomes following single-bundle transtibial arthroscopic posterior cruciate ligament reconstruction. Int Orthop 37:337–343PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Campbell RB, Torrie A, Hecker A, Sekiya JK (2007) Comparison of tibial graft fixation between simulated arthroscopic and open inlay techniques for posterior cruciate ligament reconstruction. Am J Sports Med 35:1731–1738PubMedCrossRefGoogle Scholar
  10. 10.
    Galloway MT, Grood ES, Mehalik JN, Levy M, Saddler SC, Noyes FR (1996) Posterior cruciate ligament reconstruction. An in vitro study of femoral and tibial graft placement. Am J Sports Med 24:437–445PubMedCrossRefGoogle Scholar
  11. 11.
    Greiner P, Magnussen RA, Lustig S, Demey G, Neyret P, Servien E (2011) Computed tomography evaluation of the femoral and tibial attachments of the posterior cruciate ligament in vitro. Knee Surg Sports Traumatol Arthrosc 19:1876–1883PubMedCrossRefGoogle Scholar
  12. 12.
    Grindem H, Eitzen I, Engebretsen L, Snyder-Mackler L, Risberg MA (2014) Nonsurgical or surgical treatment of ACL injuries: knee function, sports participation, and knee reinjury: the Delaware-Oslo ACL cohort study. J Bone Joint Surg Am 96:1233–1241PubMedCrossRefGoogle Scholar
  13. 13.
    Jawhar A, Wasnik S, Scharf HP, Roehl H (2014) Fibula head is a useful landmark to predict the location of posterior cruciate ligament footprint prior to total knee arthroplasty. Int Orthop 38:267–272PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Johannsen AM, Anderson CJ, Wijdicks CA, Engebretsen L, LaPrade RF (2013) Radiographic landmarks for tunnel positioning in posterior cruciate ligament reconstructions. Am J Sports Med 41:35–42PubMedCrossRefGoogle Scholar
  15. 15.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–501PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kim SJ, Jung M, Moon HK, Kim SG, Chun YM (2011) Anterolateral transtibial posterior cruciate ligament reconstruction combined with anatomical reconstruction of posterolateral corner insufficiency: comparison of single-bundle versus double-bundle posterior cruciate ligament reconstruction over a 2- to 6-year follow-up. Am J Sports Med 39:481–489PubMedCrossRefGoogle Scholar
  17. 17.
    Kim YM, Lee CA, Matava MJ (2011) Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 39:425–434PubMedCrossRefGoogle Scholar
  18. 18.
    Lee DW, Jang HW, Lee YS, Oh SJ, Kim JY, Song HE, Kim JG (2014) Clinical, functional, and morphological evaluations of posterior cruciate ligament reconstruction with remnant preservation: minimum 2-year follow-up. Am J Sports Med 42:1822–1831PubMedCrossRefGoogle Scholar
  19. 19.
    Li B, Wen Y, Wu H, Qian Q, Wu Y, Lin X (2009) Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of hamstring tendon graft versus LARS artificial ligament. Int Orthop 33:991–996PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lorenz S, Elser F, Brucker PU, Obst T, Imhoff AB (2009) Radiological evaluation of the anterolateral and posteromedial bundle insertion sites of the posterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 17:683–690PubMedCrossRefGoogle Scholar
  21. 21.
    MacGillivray JD, Stein BE, Park M, Allen AA, Wickiewicz TL, Warren RF (2006) Comparison of tibial inlay versus transtibial techniques for isolated posterior cruciate ligament reconstruction: minimum 2-year follow-up. Arthroscopy 22:320–328PubMedCrossRefGoogle Scholar
  22. 22.
    Mannor DA, Shearn JT, Grood ES, Noyes FR, Levy MS (2000) Two-bundle posterior cruciate ligament reconstruction. An in vitro analysis of graft placement and tension. Am J Sports Med 28:833–845PubMedGoogle Scholar
  23. 23.
    Margheritini F, Mauro CS, Rihn JA, Stabile KJ, Woo SL, Harner CD (2004) Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction: analysis of knee kinematics and graft in situ forces. Am J Sports Med 32:587–593PubMedCrossRefGoogle Scholar
  24. 24.
    Markolf KL, Zemanovic JR, McAllister DR (2002) Cyclic loading of posterior cruciate ligament replacements fixed with tibial tunnel and tibial inlay methods. J Bone Joint Surg Am 84-A:518–524PubMedGoogle Scholar
  25. 25.
    Markolf KL, Feeley BT, Jackson SR, McAllister DR (2006) Where should the femoral tunnel of a posterior cruciate ligament reconstruction be placed to best restore anteroposterior laxity and ligament forces? Am J Sports Med 34:604–611PubMedCrossRefGoogle Scholar
  26. 26.
    Nicodeme JD, Löcherbach C, Jolles BM (2014) Tibial tunnel placement in posterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 22:1556–1562PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Osti M, Tschann P, Künzel KH, Benedetto KP (2012) Anatomic characteristics and radiographic references of the anterolateral and posteromedial bundles of the posterior cruciate ligament. Am J Sports Med 40:1558–1563PubMedCrossRefGoogle Scholar
  28. 28.
    Petersen W, Lenschow S, Weimann A, Strobel MJ, Raschke MJ, Zantop T (2006) Importance of femoral tunnel placement in double-bundle posterior cruciate ligament reconstruction: biomechanical analysis using a robotic/universal force-moment sensor testing system. Am J Sports Med 34:456–463PubMedCrossRefGoogle Scholar
  29. 29.
    Schnurr C, Eysel P, König DP (2012) Is the effect of a posterior cruciate ligament resection in total knee arthroplasty predictable? Int Orthop 36:83–88PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Seon JK, Song EK (2006) Reconstruction of isolated posterior cruciate ligament injuries: a clinical comparison of the transtibial and tibial inlay techniques. Arthroscopy 22:27–32PubMedCrossRefGoogle Scholar
  31. 31.
    Takahashi M, Matsubara T, Doi M, Suzuki D, Nagano A (2006) Anatomical study of the femoral and tibial insertions of the anterolateral and posteromedial bundles of human posterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:1055–1059PubMedCrossRefGoogle Scholar
  32. 32.
    Tompkins M, Keller TC, Milewski MD, Gaskin CM, Brockmeier SF, Hart JM, Miller MD (2013) Anatomic femoral tunnels in posterior cruciate ligament reconstruction: inside-out versus outside-in drilling. Am J Sports Med 41:43–50PubMedCrossRefGoogle Scholar
  33. 33.
    Wind WM Jr, Bergfeld JA, Parker RD (2004) Evaluation and treatment of posterior cruciate ligament injuries: revisited. Am J Sports Med 32:1765–1775PubMedCrossRefGoogle Scholar
  34. 34.
    Wang H, Fleischli JE, Hutchinson ID, Zheng NN (2014) Knee moment and shear force are correlated with femoral tunnel orientation after single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 42:2377–2385. doi: 10.1177/0363546514541232 PubMedCrossRefGoogle Scholar
  35. 35.
    Yue B, Varadarajan KM, Rubash HE, Li G (2012) In vivo function of posterior cruciate ligament before and after posterior cruciate ligament-retaining total knee arthroplasty. Int Orthop 36:1387–1392PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2014

Authors and Affiliations

  • Michael Osti
    • 1
  • Doris Hierzer
    • 1
  • Alessa Krawinkel
    • 2
  • Thomas Hoffelner
    • 3
  • Karl Peter Benedetto
    • 1
  1. 1.Department for Trauma Surgery and Sports TraumatologyAcademic Hospital FeldkirchFeldkirchAustria
  2. 2.Department for RadiologyAcademic Hospital FeldkirchFeldkirchAustria
  3. 3.Department for Trauma Surgery and Sports TraumatologyParacelsus Medical University SalzburgSalzburgAustria

Personalised recommendations