International Orthopaedics

, Volume 38, Issue 12, pp 2499–2503 | Cite as

The biomechanics of biodegradable versus titanium interference screw fixation for anterior cruciate ligament augmentation and reconstruction

  • Max EttingerEmail author
  • Diana Schumacher
  • Tilman Calliess
  • Antonios Dratzidis
  • Marco Ezechieli
  • Christof Hurschler
  • Christoph Becher
Original Paper



The ligament augmentation and reconstruction system (LARS) is one of the options available for anterior cruciate ligament (ACL) reconstruction. To date, however, there are no published data regarding the biomechanical properties of LARS fixation for ACL reconstruction. The aim of this study was to investigate the biomechanical properties of various LARS interference-screw fixations.


A total of 100 LARS ligaments were fixed in porcine femurs with five different interference screws (four biodegradable screws and one titanium interference screw) introduced from inside-out or extra-articularly outside-in. Each group consisted of ten specimens. The constructs were cyclically stretched and subsequently loaded until failure. We evaluated the maximum load before failure, elongation during cyclic loading, stiffness, and failure mode.


Elongation during cyclical loading for all devices tested was significantly larger between the first and 20th cycles than between the 20th and 500th cycles (p < 0.05). Maximum failure load was not significantly lower for the biodegradable screws than for the titanium screws (p > 0.05). All specimens failed because of ligament pull-out from the bony tunnel.


Our findings suggest that biomechanical secure fixation of the LARS for ACL reconstruction can be achieved using either biodegradable or titanium interference screws. The stability of fixation is independent of the approach, type of investigation, and type of fixation (extra-articular outside-in or intra-articular inside-out).


LARS ACL reconstruction ACL biomechanics Interference screw 


  1. 1.
    Brand J, Weiler A, Caborn DNM, Brown CH, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28(5):761–764PubMedGoogle Scholar
  2. 2.
    Brand JC, Nyland J, Caborn DNM, Johnson DL (2005) Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy 21(8):911–916PubMedCrossRefGoogle Scholar
  3. 3.
    Brown CH, Wilson DR, Hecker AT, Ferragamo M (2004) Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Arthroscopy 20(9):922–935PubMedCrossRefGoogle Scholar
  4. 4.
    Ettinger M, Petri M, Haag KT, Brand S, Dratzidis A, Hurschler C, Krettek C, Jagodzinski M (2013) Biomechanical properties of femoral posterior cruciate ligament fixations. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-013-2600-2 Google Scholar
  5. 5.
    Ettinger M, Wehrhahn T, Petri M, Liodakis E, Olender G, Albrecht UV, Hurschler C, Krettek C, Jagodzinski M (2012) The fixation strength of tibial PCL press-fit reconstructions. Knee Surg Sports Traumatol Arthrosc 20(2):308–314PubMedCrossRefGoogle Scholar
  6. 6.
    Frank CB, Jackson DW (1997) The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 79(10):1556–1576PubMedGoogle Scholar
  7. 7.
    Hamido F, Misfer AK, Al Harran H, Khadrawe TA, Soliman A, Talaat A, Awad A, Khairat S (2011) The use of the LARS artificial ligament to augment a short or undersized ACL hamstrings tendon graft. Knee 18(6):373–378PubMedCrossRefGoogle Scholar
  8. 8.
    Höher J, Möller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6(4):231–240PubMedCrossRefGoogle Scholar
  9. 9.
    Jagodzinski M, Ettinger M, Haasper C, Hankemeier S, Breitmeier D, Hurschler C, Krettek C (2010) Biomechanical analysis of press-fit fixation of anterior cruciate ligament transplants. Unfallchirurg 113(7):532–539PubMedCrossRefGoogle Scholar
  10. 10.
    Kousa P, Jarvinen TLN, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction: part I: Femoral site. Am J Sports Med 31(2):174–181PubMedGoogle Scholar
  11. 11.
    Morrison J (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3(1):51–61PubMedCrossRefGoogle Scholar
  12. 12.
    Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29(1):67–71PubMedGoogle Scholar
  13. 13.
    Nau T, Lavoie P, Duval N (2002) A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. Two-year follow-up of a randomised trial. J Bone Joint Surg (Br) 84(3):356–360CrossRefGoogle Scholar
  14. 14.
    Newman SD, Atkinson HD, Willis-Owen CA (2013) Anterior cruciate ligament reconstruction with the ligament augmentation and reconstruction system: a systematic review. Int Orthop 37(2):321–326PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Noyes FR, Barber-Westin SD (2001) Revision anterior cruciate surgery with use of bone-patellar tendon-bone autogenous grafts. J Bone Joint Surg Am 83-A(8):1131–1143PubMedGoogle Scholar
  16. 16.
    Nurmi JT, Jarvinen TL, Kannus P, Sievanen H, Toukosalo J, Jarvinen M (2002) Compaction versus extraction drilling for fixation of the hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 30(2):167–173PubMedGoogle Scholar
  17. 17.
    Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Suedkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28(3):356–359PubMedGoogle Scholar
  18. 18.
    Weiler A, Windhagen HJ, Raschke MJ, Laumeyer A, Hoffmann RF (1998) Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 26(1):119–126PubMedGoogle Scholar
  19. 19.
    Yamamoto H, Ishibashi T, Muneta T, Furuya K, Mizuta T (1992) Effusions after anterior cruciate ligament reconstruction using the ligament augmentation device. Arthroscopy 8(3):305–310PubMedCrossRefGoogle Scholar
  20. 20.
    Yasuda K, Tsujino J, Tanabe Y, Kaneda K (1997) Effects of initial graft tension on clinical outcome after anterior cruciate ligament reconstruction. Am J Sports Med 25(1):99–106PubMedCrossRefGoogle Scholar
  21. 21.
    Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W (2006) Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d, l-lactide, and poly-d, l-lactide-tricalcium phosphate screws. Arthroscopy 22(11):1204–1210PubMedCrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2014

Authors and Affiliations

  • Max Ettinger
    • 1
    Email author
  • Diana Schumacher
    • 1
  • Tilman Calliess
    • 1
  • Antonios Dratzidis
    • 1
  • Marco Ezechieli
    • 1
  • Christof Hurschler
    • 2
  • Christoph Becher
    • 1
  1. 1.Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany
  2. 2.Department of Biomechanics and BiomaterialsHannover Medical SchoolHanoverGermany

Personalised recommendations