International Orthopaedics

, Volume 38, Issue 5, pp 1011–1017 | Cite as

Interference in the endplate nutritional pathway causes intervertebral disc degeneration in an immature porcine model

  • Ran Kang
  • Haisheng Li
  • Steffen Ringgaard
  • Kresten Rickers
  • Haolin Sun
  • Muwan Chen
  • Lin Xie
  • Cody Bünger
Original Paper



Previous studies have shown that blocking the endplate nutritional pathway with bone cement did not result in obvious intervertebral disc degeneration (IDD) in mature animal models. However, there are very few comparable studies in immature animal models. As vertebroplasty currently is beginning to be applied in young, even biologically immature patients, it is important to investigate the effect of cement blocking at the endplate in an immature animal model.


Two lumbar intervertebral discs in eight immature pigs were either blocked by cement in both endplate pathways or stabbed with a scalpel in the annulus fibrosus (AF) as a positive control, and with a third disc remaining intact as a normal control. Magnetic resonance imaging (MRI) and histology study were performed.


After three months, the cement-blocked discs exhibited severe IDD, with the percentage of disc-height index (DHI), nucleus pulposus (NP) area, and NP T2 value significantly lower than the normal control. These IDD changes were histologically confirmed. Post-contrast MRI showed diseased nutritional diffusion patterns in the cement-blocked discs. Moreover, the degenerative changes of the cement-blocked discs exceeded those of the injured AF positive controls.


The endplate nutritional pathway was interfered with and diseased after three months of bone cement intervention in an immature porcine model. Severe interference in the endplate nutritional pathway in an immature porcine model caused IDD. These findings also draw attention to the fact that interference in endplate nutritional pathways in immature or young patients may affect the vitality of adjacent discs.


Endplate nutritional pathway Intervertebral disc degeneration Vertebroplasty Bone cement MRI Immature porcine model 



We thank Anette Baatrup, Dandan Chen, and Yufen Zhang for their technical and surgical assistance. We gratefully acknowledge the funding from Velux (25906), Lundbeck, Gigtforeningen Foundation, and the International Cooperation and Natural Science Foundation of Jiansu province of China (BZ2011046, BK2012490).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Patel KP, Sandy JD, Akeda K, Miyamoto K, Chujo T, An HS, Masuda K (2007) Aggrecanases and aggrecanase-generated fragments in the human intervertebral disc at early and advanced stages of disc degeneration. Spine 32(23):2596–2603. doi: 10.1097/BRS.0b013e318158cb85 PubMedCrossRefGoogle Scholar
  2. 2.
    Takashima H, Takebayashi T, Yoshimoto M, Terashima Y, Tsuda H, Ida K, Yamashita T (2012) Correlation between T2 relaxation time and intervertebral disk degeneration. Skelet Radiol 41(2):163–167. doi: 10.1007/s00256-011-1144-0 CrossRefGoogle Scholar
  3. 3.
    Beattie PF (2008) Current understanding of lumbar intervertebral disc degeneration: a review with emphasis upon etiology, pathophysiology, and lumbar magnetic resonance imaging findings. J Orthop Sports Phys Ther 38(6):329–340. doi: 10.2519/jospt.2008.2768 PubMedCrossRefGoogle Scholar
  4. 4.
    Rajasekaran S, Naresh-Babu J, Murugan S (2007) Review of postcontrast MRI studies on diffusion of human lumbar discs. J Magnetic Resonance Imaging JMRI 25(2):410–418. doi: 10.1002/jmri.20853 CrossRefGoogle Scholar
  5. 5.
    Grunhagen T, Shirazi-Adl A, Fairbank JC, Urban JP (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin N Am 42(4):465–477. doi: 10.1016/j.ocl.2011.07.010, viiCrossRefGoogle Scholar
  6. 6.
    Ogata K, Whiteside LA (1981) 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine 6(3):211–216PubMedCrossRefGoogle Scholar
  7. 7.
    van der Werf M, Lezuo P, Maissen O, van Donkelaar CC, Ito K (2007) Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusive transport. J Anat 211(6):769–774. doi: 10.1111/j.1469-7580.2007.00816.x PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Rinkler C, Heuer F, Pedro MT, Mauer UM, Ignatius A, Neidlinger-Wilke C (2010) Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading. J Neurosurg Spine 13(4):535–542. doi: 10.3171/2010.4.SPINE09713 PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson WE, Stephan S, Roberts S (2008) The influence of serum, glucose and oxygen on intervertebral disc cell growth in vitro: implications for degenerative disc disease. Arthr Res Ther 10(2):R46. doi: 10.1186/ar2405 CrossRefGoogle Scholar
  10. 10.
    Liu YJ, Huang GS, Juan CJ, Yao MS, Ho WP, Chan WP (2009) Intervertebral disk degeneration related to reduced vertebral marrow perfusion at dynamic contrast-enhanced MRI. AJR Am J Roentgenol 192(4):974–979. doi: 10.2214/AJR.08.1597 PubMedCrossRefGoogle Scholar
  11. 11.
    Krebs J, Ferguson SJ, Goss BG, Stauffer E, Ettinger L, Aebli N (2012) Effect of vertebral cement augmentation with polymethylmethacrylate on intervertebral disc and bone tissue. J Biomed Mater Res B Appl Biomater 100(3):660–667. doi: 10.1002/jbm.b.31990 PubMedCrossRefGoogle Scholar
  12. 12.
    Hutton WC, Murakami H, Li J, Elmer WA, Yoon ST, Minamide A, Akamaru T, Tomita K (2004) The effect of blocking a nutritional pathway to the intervertebral disc in the dog model. J Spinal DisordTech 17(1):53–63CrossRefGoogle Scholar
  13. 13.
    Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ (2004) Histologic changes after vertebroplasty. J Bone Joint Surg Am Vol 86-A(6):1230–1238Google Scholar
  14. 14.
    Rahamimov N, Mulla H, Shani A, Freiman S (2012) Percutaneous augmented instrumentation of unstable thoracolumbar burst fractures. Eur Spine J 21(5):850–854. doi: 10.1007/s00586-011-2106-x PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yoon SH, Miyazaki M, Hong SW, Tow B, Morishita Y, Hu M, Ahn SJ, Wang JC (2008) A porcine model of intervertebral disc degeneration induced by annular injury characterized with magnetic resonance imaging and histopathological findings. Laboratory investigation. J Neurosurg Spine 8(5):450–457. doi: 10.3171/SPI/2008/8/5/450 PubMedCrossRefGoogle Scholar
  16. 16.
    Bendtsen M, Bunger CE, Zou X, Foldager C, Jorgensen HS (2011) Autologous stem cell therapy maintains vertebral blood flow and contrast diffusion through the endplate in experimental intervertebral disc degeneration. Spine 36(6):E373–E379. doi: 10.1097/BRS.0b013e3181dce34c PubMedCrossRefGoogle Scholar
  17. 17.
    Cinotti G, Della Rocca C, Romeo S, Vittur F, Toffanin R, Trasimeni G (2005) Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries. Spine 30(2):174–180PubMedCrossRefGoogle Scholar
  18. 18.
    Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, Thonar E, Andersson G, An HS (2006) Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine 31(7):742–754. doi: 10.1097/01.brs.0000206358.66412.7b PubMedCrossRefGoogle Scholar
  19. 19.
    Obata S, Akeda K, Imanishi T, Masuda K, Bae W, Morimoto R, Asanuma Y, Kasai Y, Uchida A, Sudo A (2012) Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit anular puncture model: a preclinical study. Arthrit Res Ther 14(6):R241. doi: 10.1186/ar4084 CrossRefGoogle Scholar
  20. 20.
    Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30(1):5–14PubMedGoogle Scholar
  21. 21.
    Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty AP, Murugan S (2004) ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 29(23):2654–2667PubMedCrossRefGoogle Scholar
  22. 22.
    Videbaek TS, Egund N, Christensen FB, Grethe Jurik A, Bunger CE (2010) Adjacent segment degeneration after lumbar spinal fusion: the impact of anterior column support: a randomized clinical trial with an eight- to thirteen-year magnetic resonance imaging follow-up. Spine 35(22):1955–1964. doi: 10.1097/BRS.0b013e3181e57269 PubMedCrossRefGoogle Scholar
  23. 23.
    Ibrahim MA, Haughton VM, Hyde JS (1995) Effect of disk maturation on diffusion of low-molecular-weight gadolinium complexes: an experimental study in rabbits. AJNR Am J Neuroradiol 16(6):1307–1311PubMedGoogle Scholar
  24. 24.
    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17):1873–1878PubMedCrossRefGoogle Scholar
  25. 25.
    Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17(5):626–643. doi: 10.1007/s00586-008-0645-6 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ran Kang
    • 1
    • 3
  • Haisheng Li
    • 1
  • Steffen Ringgaard
    • 2
  • Kresten Rickers
    • 1
  • Haolin Sun
    • 1
  • Muwan Chen
    • 1
  • Lin Xie
    • 3
  • Cody Bünger
    • 1
  1. 1.Orthopaedic Research LaboratoryAarhus UniversityAarhus CDenmark
  2. 2.The MR Research Centre, Aarhus University HospitalAarhus CDenmark
  3. 3.Department of Orthopedic SurgeryJiangsu Province Hospital on Integration of Chinese and Western MedicineNanjingChina

Personalised recommendations