Advertisement

International Orthopaedics

, Volume 38, Issue 7, pp 1527–1533 | Cite as

Local delivery of recombinant human bone morphogenetic proteins and bisphosphonate via sucrose acetate isobutyrate can prevent femoral head collapse in Legg-Calve-Perthes disease: a pilot study in pigs

  • Tegan L. Cheng
  • Ciara M. Murphy
  • Laurence C. Cantrill
  • Kathy Mikulec
  • Clare Carpenter
  • Aaron Schindeler
  • David G. Little
Original Paper

Abstract

Purpose

Legg-Calve-Perthes disease is a paediatric condition encompassing idiopathic osteonecrosis of the femoral head (ONFH). Preventing collapse and the need for subsequent joint replacement remains the major goal of clinical management. This exploratory study utilises a porcine model of surgically induced ONFH.

Methods

rhBMP-2 with and without zoledronic acid (ZA) was delivered by intra-osseous injection in the phase-transitioning sucrose acetate isobutyrate (SAIB) in an attempt to prevent femoral head collapse. Epiphyseal quotient (EQ) at eight weeks post-surgery was the primary outcome measure. Heterotopic ossification in the joint capsule and bisphosphonate retention in the femoral head were key secondary outcomes.

Results

Femoral heads with ONFH and no treatment all collapsed (3/3, EQ < 0.4, P < 0.05 compared to no ONFH). Local delivery of rhBMP-2/SAIB into the femoral head prevented collapse by EQ measurement one of four samples; however, this specimen still showed evidence of significant collapse. In contrast, the combination of local rhBMP-2 and local ZA prevented collapse in two of four samples. Confocal fluorescence microscopy showed locally dosed bisphosphonate entered and was retained in the femoral head. This group also showed strong Calcein signal, indicating new bone formation. Treatment with rhBMP-2 was associated with a limited amount of heterotrophic ossification in the joint capsules in some specimens.

Conclusions

Operators reported SAIB to be an efficient way to deliver rhBMP-2 to the femoral head. These data suggest that rhBMP-2 is ineffective for preventing femoral head collapse without the addition of bisphosphonate. Further research will be required to validate the clinical efficacy of a combined local rhBMP-2/bisphosphonate approach.

Keywords

Perthes disease ONFH Bisphosphonate rhBMP-2 SAIB 

Notes

Acknowledgments

This work received funding support from the Australian Orthopaedic Association (AOA) in the form of a grant. Tegan Cheng was supported by funding from an Australian Postgraduate Award (APA) from the Australian Research Council.

The Leica SP5 in the CLEM Suite at KRI was supported by the following grants: Cancer Institute New South Wales Research Equipment [10/REG/1-23], Australian National Health and Medical Research Council [2009-02759], the Ian Potter Foundation [20100508], the Perpetual Foundation [730], the Ramaciotti Foundation [3037/2010], and the Sydney Medical School Research Infrastructure Major Equipment Scheme.

Conflict of interest

The authors (TLC, AS, DGL) have an IP position relating to the approach used in this study. No commercial funding support was received.

References

  1. 1.
    Fabry G (2010) Clinical practice—The hip from birth to adolescence. Eur J Pediatr 169(2):143–148. doi: 10.1007/s00431-009-1025-x PubMedCrossRefGoogle Scholar
  2. 2.
    Costa CR, Johnson AJ, Naziri Q, Mont MA (2011) Review of total hip resurfacing and total hip arthroplasty in young patients who had Legg-Calve-Perthes disease. Orthop Clin N Am 42(3):419–422. doi: 10.1016/j.ocl.2011.04.002, viiiCrossRefGoogle Scholar
  3. 3.
    Little DG, Kim HK (2011) Potential for bisphosphonate treatment in Legg-Calve-Perthes disease. J Pediatr Orthop 31(2 Suppl):S182–S188. doi: 10.1097/BPO.0b013e318223b541 PubMedCrossRefGoogle Scholar
  4. 4.
    Young ML, Little DG, Kim HKW (2012) Evidence for using bisphosphonate to treat Legg-Calve-Perthes disease. Clin Orthop Relat Res 470(9):2462–2475. doi: 10.1007/s11999-011-2240-0 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Little DG, McDonald M, Sharpe IT, Peat R, Williams P, McEvoy T (2005) Zoledronic acid improves femoral head sphericity in a rat model of perthes disease. J Orthop Res 23(4):862–868. doi: 10.1016/j.orthres.2004.11.015 PubMedCrossRefGoogle Scholar
  6. 6.
    Little DG, Peat RA, McEvoy A, Williams PR, Smith EJ, Baldock PA (2003) Zoledronic acid treatment results in retention of femoral head structure after traumatic osteonecrosis in young Wistar rats. J Bone Miner Res 18(11):2016–2022. doi: 10.1359/jbmr.2003.18.11.2016 PubMedCrossRefGoogle Scholar
  7. 7.
    Kim HKW, Su PH, Qiu YS (2001) Histopathologic changes in growth-plate cartilage following ischemic necrosis of the capital femoral epiphysis—An experimental investigation in immature pigs. J Bone Joint Surg Am 83A(5):688–697Google Scholar
  8. 8.
    Kim HKW, Su PH (2002) Development of flattening and apparent fragmentation following ischemic necrosis of the capital femoral epiphysis in a piglet model. J Bone Joint Surg Am 84A(8):1329–1334Google Scholar
  9. 9.
    Kim HK, Randall TS, Bian H, Jenkins J, Garces A, Bauss F (2005) Ibandronate for prevention of femoral head deformity after ischemic necrosis of the capital femoral epiphysis in immature pigs. J Bone Joint Surg Am 87A(3):550–557. doi: 10.2106/jbjs.d.02192 Google Scholar
  10. 10.
    Ramachandran M, Ward K, Brown RR, Munns CF, Cowell CT, Little DG (2007) Intravenous bisphosphonate therapy for traumatic osteonecrosis of the femoral head in adolescents. J Bone Joint Surg Am 89A(8):1727–1734. doi: 10.2106/jbjs.f.00964 CrossRefGoogle Scholar
  11. 11.
    Nguyen T, Zacharin MR (2006) Pamidronate treatment of steroid associated osteonecrosis in young patients treated for acute lymphoblastic leukaemia—two-year outcomes. J Pediatr Endocrinol Metab 19(2):161–167PubMedCrossRefGoogle Scholar
  12. 12.
    Kotecha RS, Powers N, Lee S-J, Murray KJ, Carter T, Cole C (2010) Use of bisphosphonates for the treatment of osteonecrosis as a complication of therapy for childhood acute lymphoblastic leukaemia (ALL). Pediatr Blood Cancer 54(7):934–940. doi: 10.1002/pbc.22428 PubMedGoogle Scholar
  13. 13.
    Vandermeer JS, Kamiya N, Aya-ay J, Garces A, Browne R, Kim HKW (2011) Local administration of ibandronate and bone morphogenetic protein-2 after ischemic osteonecrosis of the immature femoral head: a combined therapy that stimulates bone formation and decreases femoral head deformity. J Bone Joint Surg Am 93A(10):905–913. doi: 10.2106/jbjs.j.00716 Google Scholar
  14. 14.
    Lu YX, Yu YL, Tang X (2007) Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release. J Pharm Sci 96(12):3252–3262. doi: 10.1002/jps.21091 PubMedCrossRefGoogle Scholar
  15. 15.
    Gong SY, Kim HW, Park HW, Lee SY, Lee KS (2011) Effects of multiple drilling on the ischemic capital femoral epiphysis of immature piglets. Yonsei Med J 52(5):809–817. doi: 10.3349/ymj.2011.52.5.809 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kim HKW (2012) Pathophysiology and new strategies for the treatment of Legg-Calvé-Perthes disease. J Bone Joint Surg Am 94A(7):659–669. doi: 10.2106/jbjs.j.01834 Google Scholar
  17. 17.
    Tsuchida Y, Kim WC, Takahashi KA, Horii M, Mikami Y, Fujioka M, Kusakabe T, Chang K, Hosokawa M, Kubo T (2005) Usefulness of epiphyseal quotient measurement on magnetic resonance images for outcome prediction in patients with early-stage Legg-Calve-Perthes disease. J Pediatr Orthop B 14(1):16–23PubMedCrossRefGoogle Scholar
  18. 18.
    Stulberg SD, Cooperman DR, Wallensten R (1981) The natural history of Legg-Calvé-Perthes disease. J Bone Joint Surg Am 63(7):1095–1108PubMedGoogle Scholar
  19. 19.
    Civinini R, De Biase P, Carulli C, Matassi F, Nistri L, Capanna R, Innocenti M (2012) The use of an injectable calcium sulphate/calcium phosphate bioceramic in the treatment of osteonecrosis of the femoral head. Int Orthop 36(8):1583–1588. doi: 10.1007/s00264-012-1525-6 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Keskin DS, Tezcaner A, Korkusuz P, Korkusuz F, Hasirci V (2005) Collagen-chondroitin sulfate-based PLLA-SAIB-coated rhBMP-2 delivery system for bone repair. Biomaterials 26(18):4023–4034. doi: 10.1016/j.biomaterials.2004.09.063 PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng TL, Valtchev P, Murphy CM, Cantrill LC, Dehghani F, Little DG, Schindeler A (2013) A sugar-based phase-transitioning delivery system for bone tissue engineering. Eur Cell Mater 26:208–221, discussion 220–201PubMedGoogle Scholar
  22. 22.
    Aya-ay J, Athavale S, Morgan-Bagley S, Bian H, Bauss F, Kim HKW (2007) Retention, distribution, and effects of intraosseously administered ibandronate in the infarcted femoral head. J Bone Miner Res 22(4):642–642CrossRefGoogle Scholar
  23. 23.
    Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, Toyama Y, Yabe Y, Kumegawa M, Hakeda Y (2000) Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 27(4):479–486. doi: 10.1016/s8756-3282(00)00358-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG (2006) Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine 31(24):2813–2819. doi: 10.1097/01.brs.0000245863.52371.c2 PubMedCrossRefGoogle Scholar
  25. 25.
    Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng A 17(9–10):1389–1399. doi: 10.1089/ten.tea.2010.0555 CrossRefGoogle Scholar
  26. 26.
    Little DG, McDonald M, Bransford R, Godfrey CB, Amanat N (2005) Manipulation of the anabolic and catabolic responses with OP-1 and zoledronic acid in a rat critical defect model. J Bone Miner Res 20(11):2044–2052. doi: 10.1359/jbmr.050712 PubMedCrossRefGoogle Scholar
  27. 27.
    Yu NYC, Schindeler A, Peacock L, Mikulec K, Fitzpatrick J, Ruys AJ, Cooper-White JJ, Little DG (2013) Modulation of anabolic and catabolic responses via a porous polymer scaffold manufactured using thermally induced phase separation. Eur Cells Mater 25:190–203Google Scholar
  28. 28.
    Schindeler A, Birke O, Yu NYC, Morse A, Ruys A, Baldock PA, Little DG (2011) Distal tibial fracture repair in a neurofibromatosis type 1-deficient mouse treated with recombinant bone morphogenetic protein and a bisphosphonate. J Bone Joint Surg Br 93B(8):1134–1139. doi: 10.1302/0301-620x.93b8.25940 CrossRefGoogle Scholar
  29. 29.
    Kang JS, Moon KH, Kwon DG, Shin BK, Woo MS (2013) The natural history of asymptomatic osteonecrosis of the femoral head. Int Orthop 37(3):379–384. doi: 10.1007/s00264-013-1775-y PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kim HS, Bae SC, Kim TH, Kim SY (2013) Endothelial nitric oxide synthase gene polymorphisms and the risk of osteonecrosis of the femoral head in systemic lupus erythematosus. Int Orthop 37(11):2289–2296. doi: 10.1007/s00264-013-1966-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tegan L. Cheng
    • 1
    • 2
  • Ciara M. Murphy
    • 1
  • Laurence C. Cantrill
    • 3
  • Kathy Mikulec
    • 1
  • Clare Carpenter
    • 1
  • Aaron Schindeler
    • 1
    • 2
  • David G. Little
    • 1
    • 2
  1. 1.Orthopaedic Research & Biotechnology UnitThe Children’s Hospital at WestmeadSydneyAustralia
  2. 2.Discipline of Paediatrics and Child Health, Sydney Medical SchoolUniversity of SydneySydneyAustralia
  3. 3.Microscopy Services at The Kids Research InstituteThe Children’s Hospital at WestmeadSydneyAustralia

Personalised recommendations