International Orthopaedics

, Volume 37, Issue 11, pp 2305–2311 | Cite as

Biomechanical evaluation of augmented and nonaugmented primary repair of the anterior cruciate ligament: an in vivo animal study

  • Helmut Seitz
  • Wofgang Pichl
  • Veronika Matzi
  • Thomas NauEmail author
Original Paper



The purpose of this study was to evaluate in a sheep model the biomechanical performance of augmented and nonaugmented primary repair of the anterior cruciate ligament (ACL) following transection at the femoral end during a 12-month postoperative observation.


Forty sheep were randomly assigned to nonaugmented or augmented primary ACL repair using a polyethylene terephthalate (PET) band. At two, six, 16, 26 and 52 weeks postoperatively four sheep in each group were sacrificed and biomechanical testing performed.


Compared with nonaugmented primary ACL repair, the PET-augmented repair demonstrated superior biomechanical results from 16 weeks postoperatively onwards in terms of anterioposterior (AP) laxity, tensile strength and ligament stiffness. The augmentation device works as a stress shield during the ligament healing process. The nonaugmented ACL repair also resulted in ligament healing, but the biomechanical properties were at a significantly lower level.


These results support the previously reported histological findings following augmented primary ACL repair. This animal study on the healing capacity of the ACL may provide some important contributions to how primary healing in certain types of ruptures can be achieved.

Clinical relevance



ACL ACL repair PET-augmented repair Nonaugmented primary repair 



The study was funded by the Austrian Research Fund (P09827-MED) and the Scientific Fund of the Major of Vienna.

Conflict of interest



  1. 1.
    Gluckert K, Kladny B, Bank-Schal A, Hofmann G (1992) MRI of the knee joint with a 3-D gradient echo sequence. Equivalent to diagnostic arthroscopy? Arch Orthop Trauma Surg 112:5–14PubMedCrossRefGoogle Scholar
  2. 2.
    Rupp S, Kaltenkirchen N, Hopf T, Gleitz M (1995) Clinical relevance of tunnel position and interference screw location after replacement-plasty of the anterior cruciate ligament with a patellar ligament transplant. Unfallchirurg 98:650–654PubMedGoogle Scholar
  3. 3.
    Gerber C, Matter P (1983) Biomechanical analysis of the knee after rupture of the anterior cruciate ligament and its primary repair. An instant-centre analysis of function. J Bone Joint Surg 65B:391–399Google Scholar
  4. 4.
    Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop 268:161–178PubMedGoogle Scholar
  5. 5.
    Sjolander P, Johansson H, Sojka P, Rehnholm A (1989) Sensory nerve endings in the cat cruciate ligaments: a morphological investigation. Neurosci Lett 102:33–38PubMedCrossRefGoogle Scholar
  6. 6.
    Barrack RL, Bruckner JD, Kneisl J, Inman WS, Alexander AH (1990) The outcome of nonoperatively treated complete tears of the anterior cruciate ligament in active young adults. Clin Orthop 259:192–199PubMedGoogle Scholar
  7. 7.
    Andersson C, Gillquist J (1992) Treatment of acute isolated and combined ruptures of the anterior cruciate ligament. A long-term follow-up study. Am J Sports Med 20:7–12PubMedCrossRefGoogle Scholar
  8. 8.
    Andersson C, Odensten M, Good L, Gillquist J (1989) Surgical or nonsurgical treatment of acute rupture of the anterior cruciate ligament. A randomized study with long-term follow-up. J Bone Joint Surg 71A:965–974Google Scholar
  9. 9.
    Engstrom B, Gornitzka J, Johansson C, Wredmark T (1993) Knee function after anterior cruciate ligament ruptures treated conservatevely. Int Orthop 17:208–213PubMedCrossRefGoogle Scholar
  10. 10.
    Radford WJ, Amis AA, Heatley FW (1994) Immediate strength after suture of a torn anterior cruciate ligament. J Bone Joint Surg 76B:480–484Google Scholar
  11. 11.
    Barber FA, Small NC, Click J (1991) Anterior cruciate ligament reconstruction by semitendinosus and gracilis tendon autograft. Am J Knee Surg 4:84–93Google Scholar
  12. 12.
    Callaway GH, Nicholas SJ, Cavanaugh J, Warren RF, Wickiewicz TL (1995) Hamstring augmentation versus patella tendon reconstruction of acute ACL tears: a randomized, prospective study. Orthop Trans 19:250–255Google Scholar
  13. 13.
    Clancy WG Jr, Nelson DA, Reider B, Narechania RG (1982) Anterior cruciate ligament reconstruction using one-third of the patellar ligament, augmented by extra-articular tendon transfers. J Bone Joint Surg 64A:352–359Google Scholar
  14. 14.
    Grana MA, Hines R (1992) Arthroscopic-assisted semitendinosus reconstruction of the anterior cruciate ligament. Am J Knee Surg 5:16–22Google Scholar
  15. 15.
    Richter M, Duerselen L, Ignatius A, Missler F, Claes L (1997) Acutely repaired proximal anterior cruciate ligament ruptures in sheep—by augmentation improved stability and reduction of cartilage damage. J Mat Sci 8:855–859Google Scholar
  16. 16.
    Shelbourne KD, Klootwyk TE, Wilckens JH, De Carlo MS (1995) Ligament stability two to six years after anterior cruciate ligament reconstruction with autogenous patellar tendon graft and participation in accelerated rehabilitation program. Am J Sports Med 23:575–579PubMedCrossRefGoogle Scholar
  17. 17.
    Chambat P, Guier C, Sonnery-Cottet B, Fayard JM, Thaunat M (2013) The evolution of ACL reconstruction over the last fifty years. Int Orthop 37:181–186PubMedCrossRefGoogle Scholar
  18. 18.
    Dejour D, Vanconcelos W, Bonin N, Saggin PRF (2013) Comparative study between mono-bundle bone-patellar tendon-bone, double-bundle hamstring and mono-bundle bone-patellar tendon-bone combined with a modified Lemaire extra-articular procedure in anterior cruciate ligament reconstruction. Int Orthop 37:193–199PubMedCrossRefGoogle Scholar
  19. 19.
    Amiel D, Kleiner JB, Roux RD, Haarwood FL, Akeson WH (1986) The phenomen of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4:162–172PubMedCrossRefGoogle Scholar
  20. 20.
    Barrett DS (1991) Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg 73B:833–837Google Scholar
  21. 21.
    Seitz H, Menth-Chiari WA, Lang S, Nau T (2008) Histological evaluation of the healing potential of the anterior cruciate ligament by means of augmented and nonaugmented repair: an in vivo animal study. Knee Surg Sports Traumatol Arthrosc 16:1087–1093PubMedCrossRefGoogle Scholar
  22. 22.
    Vavken P, Fleming BC, Mastrangelo AN, Machan JT, Murray MM (2012) Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy 28:672–680PubMedCrossRefGoogle Scholar
  23. 23.
    Struewer J, Ziring E, Frangen TM, Efe T, Meissner S et al (2013) Clinical outcome and prevalence of osteoarthritis after isolated anterior cruciate ligament reconstruction using hamstring graft: follow-up after two and ten years. Int Orthop 37:271–277PubMedCrossRefGoogle Scholar
  24. 24.
    Mastrangelo AN, Haus BM, Vavken P, Palmer MP, Machan JT, Murray MM (2010) Immature animals have higher cellular density in the healing anterior cruciate ligament than adolescent or adult animals. J Orthop Res 28:1100–1106PubMedGoogle Scholar
  25. 25.
    Mastrangelo AN, Magarian EM, Palmer MP, Vavken P, Murray MM (2010) The effect of skeletal maturity on the regenerative function of intrinsic ACL cells. J Orthop Res 28:644–651PubMedGoogle Scholar
  26. 26.
    Murray MM, Magarian EM, Harrison SL, Mastrangelo AN, Zurakowski D, Fleming BC (2010) The effect of skeletal maturity on functional healing of the anterior cruciate ligament. J Bone Joint Surg Am 92:2039–2049PubMedCrossRefGoogle Scholar
  27. 27.
    Murray MM (2009) Current status and potential of primary ACL repair. Clin Sports Med 28:51–61PubMedCrossRefGoogle Scholar
  28. 28.
    Fruensgaard S, Kroner K, Riis J (1992) Suture of the torn anterior cruciate ligament. 5-year follow-up of 60 cases using an instrumental stability test. Acta Orthop Scand 63:323–325PubMedCrossRefGoogle Scholar
  29. 29.
    Genelin F, Trost A, Primavesi C, Knoll P (1993) Late results following proximal reinsertion of isolated ruptured ACL ligaments. Knee Surg Sports Traumatol Arthroscop 1:17–19CrossRefGoogle Scholar
  30. 30.
    Biedert RM, Stauffer E, Friedrich NF (1992) Occurrence of free nerve endings in the soft tissue of the knee joint. A histologic investigation. Am J Sports Med 20:430–433PubMedCrossRefGoogle Scholar
  31. 31.
    Boynton MD, Fadale PD (1993) The basic science of anterior cruciate ligament injury. Orthop Rev 22:673–679PubMedGoogle Scholar
  32. 32.
    Elmqvist LG, Lorentzon R, Johansson C, Fugl-Meyer AR (1988) Does a torn anterior cruciate ligament lead to change in the central nervous drive of the knee extensors? Eur J Appl Physiol Occup Physiol 58:203–207PubMedCrossRefGoogle Scholar
  33. 33.
    Giffin JR, Harner CD (2001) Failed anterior cruciate ligament surgery: overview of the problem. Am J Knee Surg 14:185–192PubMedGoogle Scholar
  34. 34.
    Marshall JL, Warren RF, Wickiewicz TL, Reider B (1979) The anterior cruciate ligament: a technique of repair and reconstruction. Clin Orthop 143:97–106PubMedGoogle Scholar
  35. 35.
    Grontvedt T, Engebretsen L, Benum P, Fasting O, Molster A, Strand T (1996) A prospective, randomized study of three operations for acute rupture of the anterior cruciate ligament. Five-year follow-up of one hundred and thirty-one patients. J Bone Joint Surg Am 78:159–168PubMedGoogle Scholar
  36. 36.
    Christen B, Jakob RP (1992) Fractures associated with patellar ligament grafts in cruciate ligament surgery. J Bone Joint Surg 74B:617–619Google Scholar
  37. 37.
    Stapleton TR (1997) Complications in anterior cruciate ligament reconstructions with patellar tendon grafts. Sports Med 5:156–162Google Scholar
  38. 38.
    Vergis A, Gillquist J (1995) Graft failure in intra-articular anterior cruciate ligament reconstruction: a review of the literature. Arthroscopy 11:312–321PubMedCrossRefGoogle Scholar
  39. 39.
    Murray MM, Martin SD, Martin TL, Spector M (2000) Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg 82A:1387–1397Google Scholar
  40. 40.
    Ng GY, Oakes BW, McLean ID, Deacon OW, Lampard D (1996) The long-term biomechanical and viscoelastic performance of repairing anterior cruciate ligament after hemitransection in a goat model. Am J Sports Med 24:109–117PubMedCrossRefGoogle Scholar
  41. 41.
    Seitz H, Marlovits S, Schwendenwein I, Muller E, Vecsei V (1998) Biocompatibility of polyethylene terephthalate (Trevira hochfest) augmentation device in repair of the anterior cruciate ligament. Biomaterials 19:189–196PubMedCrossRefGoogle Scholar
  42. 42.
    Takahashi Y, Tabata Y (2004) Effect of the fiber diameter and porosity of nonwoven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J Biomater Sci Polymer Edn 15:41–57CrossRefGoogle Scholar
  43. 43.
    Takamoto T, Hiraoka Y, Tabata Y (2007) Enhanced proliferation and osteogenic differentiation of rat mesenchymal stem cells in collagene sponge reinforced with different polyethylene terephtalate fibers. J Biomater Sci polymer Edn 18:865–881CrossRefGoogle Scholar
  44. 44.
    Vavken P, Murray MM (2011) The potential for primary repair of the ACL. Sports Med Arthrosc 19:44–49PubMedCrossRefGoogle Scholar
  45. 45.
    Vavken P, Saad FA, Murray MM (2010) Age dependence of expression of growth factor receptors in porcine ACL fibroblasts. J Orthop Res 28:1107–1112PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Helmut Seitz
    • 1
  • Wofgang Pichl
    • 2
  • Veronika Matzi
    • 3
  • Thomas Nau
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of Trauma SurgeryMedical University of GrazGrazAustria
  2. 2.Department of Physics of Functional MaterialsUniversity of ViennaViennaAustria
  3. 3.Department of Surgery, Division of Thoracic and Hyperbaric SurgeryMedical University of GrazGrazAustria
  4. 4.Ludwig Boltzmann Institute of Experimental and Clinical TraumatologyViennaAustria
  5. 5.The Austrian Cluster for Tissue EngineeringViennaAustria
  6. 6.IMSART, Institute for Musculoskeletal Analysis Research and TherapyViennaAustria

Personalised recommendations