International Orthopaedics

, Volume 37, Issue 3, pp 369–377 | Cite as

The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora

  • Thilo FloerkemeierEmail author
  • Jens Gronewold
  • Sebastian Berner
  • Gavin Olender
  • Christof Hurschler
  • Henning Windhagen
  • Gabriela von Lewinski
Original Paper



The number of candidates for a total hip arthroplasty (THA) is steadily increasing, while the average patient age is decreasing for primary THA. The rise in THA is mainly due to excellent clinical outcomes and the extended longevity of modern implants. Short stem arthroplasties with predominantly metaphyseal fixation such as the Metha® stem are suggested for young patients. It is hypothesised that the more physiological load transfer of these devices reduces stress shielding, which in turn may reduce the risk of aseptic loosening. However, patients with femoral deformities often require a deviation of the resection height. To this end, our aim was to evaluate how resection height influences strain patterns in order to characterise possible limits for short stem implantation.


Biomechanical testing using ten strain gauges on synthetic bone illustrated the strain patterns of three different resection heights (0, +5 and +10 mm) for the Metha stem.


The greatest differences in strains were displayed at the “high” (most proximal) resection height (+10 mm) when compared to the non-implanted strain pattern. At the medial calcar, the strain was 143 % for +10 mm, 96 % for +5 mm and 94 % for 0 mm. Overall, discrepancies were less for deeper resections.


The deeper the resection, the more similar the strain patterns are when compared to a non-implanted synthetic bone. Changes in strain patterns are induced by variation in the varus/valgus positioning of the implant and by different offsets.


Proximal Femur Strain Pattern Short Stem Gruen Zone Major Principal Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study was kindly supported by the “Hochschulinterne Leistungsförderung (HiLF)” of the MHH and by Aesculap who provided the implants for the biomechanical testing.

Conflict of interest

Three of the authors (T. Floerkemeier, H. Windhagen and G. von Lewinski) are paid instructors for the company B. Braun Aesculap, Tuttlingen, Germany.


  1. 1.
    Aamodt A, Lund-Larsen J, Eine J, Andersen E, Benum P, Husby OS (2001) Changes in proximal femoral strain after insertion of uncemented standard and customised femoral stems. An experimental study in human femora. J Bone Joint Surg Br 83(6):921–929PubMedCrossRefGoogle Scholar
  2. 2.
    Albanese CV, Santori FS, Pavan L, Learmonth ID, Passariello R (2009) Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems: 37 patients followed for 3 years. Acta Orthop 80(3):291–297PubMedCrossRefGoogle Scholar
  3. 3.
    Braun A, Lazovic D, Zigan R (2007) Modular short-stem prosthesis in total hip arthroplasty: implant positioning and the influence of navigation. Orthopedics 30(10 Suppl):S148–S152PubMedGoogle Scholar
  4. 4.
    Cristofolini L, Juszczyk M, Taddei F, Field RE, Rushton N, Viceconti M (2009) Stress shielding and stress concentration of contemporary epiphyseal hip prostheses. Proc Inst Mech Eng H 223(1):27–44PubMedGoogle Scholar
  5. 5.
    Cristofolini L, Juszczyk M, Taddei F, Viceconti M (2009) Strain distribution in the proximal human femoral metaphysis. Proc Inst Mech Eng H 223(3):273–288PubMedCrossRefGoogle Scholar
  6. 6.
    Decking R, Puhl W, Simon U, Claes LE (2006) Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems. Clin Biomech (Bristol, Avon) 21(5):495–501CrossRefGoogle Scholar
  7. 7.
    Ettinger M, Ettinger P, Lerch M, Radtke K, Budde S, Ezechieli M, Becher C, Thorey F (2011) The NANOS short stem in total hip arthroplasty: a mid term follow-up. Hip Int 21(5):583–586PubMedCrossRefGoogle Scholar
  8. 8.
    Fink B, Wessel S, Deuretzbacher G, Protzen M, Ruther W (2007) Midterm results of “thrust plate” prosthesis. J Arthroplasty 22(5):703–710PubMedCrossRefGoogle Scholar
  9. 9.
    Floerkemeier T, Tscheuschner N, Calliess T, Ezechieli M, Floerkemeier S, Budde S, Windhagen H, von Lewinski G (2012) Cementless short stem hip arthroplasty METHA® as an encouraging option in adults with osteonecrosis of the femoral head. Arch Orthop Trauma Surg 132(8):1125–1131PubMedCrossRefGoogle Scholar
  10. 10.
    Fottner A, Schmid M, Birkenmaier C, Mazoochian F, Plitz W, Volkmar J (2009) Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 24(5):429–434CrossRefGoogle Scholar
  11. 11.
    Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27Google Scholar
  12. 12.
    Gulow J, Scholz R, Freiherr von Salis-Soglio G (2007) Short-stemmed endoprostheses in total hip arthroplasty. Orthopade 36(4):353–359PubMedCrossRefGoogle Scholar
  13. 13.
    Heiner AD, Brown TD (2001) Structural properties of a new design of composite replicate femurs and tibias. J Biomech 34(6):773–781PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffmann K (1989) An introduction of measurements using strain gauges. Hottinger Baldwin Messtechnik, DarmstadtGoogle Scholar
  15. 15.
    Kim YH, Kim JS, Cho SH (2001) Strain distribution in the proximal human femur. An in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems. J Bone Joint Surg Br 83(2):295–301PubMedCrossRefGoogle Scholar
  16. 16.
    Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2011) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36(3):533–538PubMedCrossRefGoogle Scholar
  17. 17.
    Logroscino G, Ciriello V, D’Antonio E, De Tullio V, Piciocco P, Magliocchetti LG, Santori FS, Albanese CV (2011) Bone integration of new stemless hip implants (proxima vs. nanos). A DXA study: preliminary results. Int J Immunopathol Pharmacol 24(1 Suppl 2):113–116PubMedGoogle Scholar
  18. 18.
    Mihalko WM, Saleh KJ, Heller MO, Mollard B, König C, Kammerzell S (2009) Femoral neck cut level affects positioning of modular short-stem implant. Orthopedics 32(10 Suppl):18–21PubMedCrossRefGoogle Scholar
  19. 19.
    Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82(7):952–958PubMedCrossRefGoogle Scholar
  20. 20.
    Østbyhaug PO, Klaksvik J, Romundstad P, Aamodt A (2009) An in vitro study of the strain distribution in human femora with anatomical and customised femoral stems. J Bone Joint Surg Br 91(5):676–682PubMedCrossRefGoogle Scholar
  21. 21.
    Rometsch E, Bos PK, Koes BW (2012) Survival of short hip stems with a “modern”, trochanter-sparing design—a systematic literature review. Hip Int 22:344–354. doi: 10.5301/HIP.2012.9472
  22. 22.
    Schmidutz F, Grote S, Pietschmann M, Weber P, Mazoochian F, Fottner A, Jansson V (2012) Sports activity after short-stem hip arthroplasty. Am J Sports Med 40(2):425–432PubMedCrossRefGoogle Scholar
  23. 23.
    Steinhauser E, Ellenrieder M, Gruber G, Busch R, Gradinger R, Mittelmeier W (2006) Influence on load transfer of different femoral neck endoprostheses. Z Orthop Ihre Grenzgeb 144(4):386–393PubMedCrossRefGoogle Scholar
  24. 24.
    Westphal FM, Bishop N, Honl M, Hille E, Püschel K, Morlock MM (2006) Migration and cyclic motion of a new short-stemmed hip prosthesis–a biomechanical in vitro study. Clin Biomech (Bristol, Avon) 21(8):834–840CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thilo Floerkemeier
    • 1
    Email author
  • Jens Gronewold
    • 1
  • Sebastian Berner
    • 2
  • Gavin Olender
    • 2
  • Christof Hurschler
    • 2
  • Henning Windhagen
    • 1
  • Gabriela von Lewinski
    • 1
  1. 1.Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany
  2. 2.Biomechanics and Biomaterials Laboratory of the Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany

Personalised recommendations