International Orthopaedics

, Volume 37, Issue 2, pp 291–299 | Cite as

Synthetic meniscus replacement: a review

  • Anne Christiane Theodora VranckenEmail author
  • Pieter Buma
  • Tony George van Tienen
Review Article


The number of meniscus-related operations continues to rise due to the ageing and more active population. Irreparable meniscal lesions generally require (partial) meniscectomy. Although a majority of the patients benefit from pain relief and functional improvement post-meniscectomy, some remain symptomatic. As an alternative to a meniscal allograft, which is only indicated for the severely damaged meniscus, most patients can nowadays be treated by implantation of a synthetic meniscal substitute. Currently three of these implants, two partial and one total replacement, are clinically available and several others are in the stage of preclinical testing. Grossly, two types of meniscal substitutes can be distinguished: porous, resorbable implants that stimulate tissue regeneration and solid, non-resorbable implants that permanently replace the whole meniscus. Although the implantation of a porous meniscus replacement generally seems promising and improves clinical outcome measures to some degree, their superiority to partial meniscectomy still needs to be proven. The evaluation of new prostheses being developed requires a wider focus than has been adopted so far. Upon selection of the appropriate materials, preclinical evaluation of such implants should comprise a combination of (in vitro) biomechanical and (in vivo) biological tests, while up to now the focus has mainly been on biological aspects. Obviously, well-defined randomised controlled trials are necessary to support clinical performance of new implants. Since the use of a meniscus replacement requires an additional costly implant and surgery compared to meniscectomy only, the clinical outcome of new products should be proven to surpass the results of the conventional therapies available.


Lysholm Score Meniscal Injury Partial Meniscectomy Meniscus Tissue Transplantation Meniscal Allograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This publication forms part of the Project P2.03 TRAMMPOLIN of the research program of the BioMedical Materials Institute, co-funded by the Dutch Ministry of Economic Affairs, Agriculture and Innovation.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Nielsen AB, Yde J (1991) Epidemiology of acute knee injuries: a prospective hospital investigation. J Trauma 31(12):1644–1648PubMedCrossRefGoogle Scholar
  2. 2.
    Lauder TD, Baker SP, Smith GS et al (2000) Sports and physical training injury hospitalizations in the army. Am J Prev Med 18(3 Suppl):118–128PubMedCrossRefGoogle Scholar
  3. 3.
    Majewski M, Susanne H, Klaus S (2006) Epidemiology of athletic knee injuries: a 10-year study. Knee 13(3):184–188PubMedCrossRefGoogle Scholar
  4. 4.
    Jones JC, Burks R, Owens BD et al (2012) Incidence and risk factors associated with meniscal injuries among active-duty US military service members. J Athl Train 47(1):67–73PubMedGoogle Scholar
  5. 5.
    Noble J, Hamblen DL (1975) The pathology of the degenerate meniscus lesion. J Bone Joint Surg Br 57(2):180–186PubMedGoogle Scholar
  6. 6.
    Poehling GG, Ruch DS, Chabon SJ (1990) The landscape of meniscal injuries. Clin Sports Med 9(3):539–549PubMedGoogle Scholar
  7. 7.
    Arendt EA (ed) (1999) Orthopaedic knowledge update: sports medicine 2. American Academy of Orthopaedic Surgeons, RosemontGoogle Scholar
  8. 8.
    Rubman MH, Noyes FR, Barber-Westin SD (1998) Arthroscopic repair of meniscal tears that extend into the avascular zone. A review of 198 single and complex tears. Am J Sports Med 26(1):87–95PubMedGoogle Scholar
  9. 9.
    Ahn JH, Lee YS, Yoo JC et al (2010) Clinical and second-look arthroscopic evaluation of repaired medial meniscus in anterior cruciate ligament-reconstructed knees. Am J Sports Med 38(3):472–477PubMedCrossRefGoogle Scholar
  10. 10.
    Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints–part I: tibial surface of the knee. J Biomech Eng 105(3):216–225PubMedCrossRefGoogle Scholar
  11. 11.
    Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 14(4):270–275PubMedCrossRefGoogle Scholar
  12. 12.
    Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg Br 30-B(4):664–670Google Scholar
  13. 13.
    Hede A, Larsen E, Sandberg H (1992) The long term outcome of open total and partial meniscectomy related to the quantity and site of the meniscus removed. Int Orthop 16(2):122–125PubMedCrossRefGoogle Scholar
  14. 14.
    Roos H, Laurén M, Adalberth T et al (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41(4):687–693PubMedCrossRefGoogle Scholar
  15. 15.
    Englund M, Lohmander LS (2004) Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 50(9):2811–2819PubMedCrossRefGoogle Scholar
  16. 16.
    Kijowski R, Blankenbaker D, Stanton P et al (2006) Arthroscopic validation of radiographic grading scales of osteoarthritis of the tibiofemoral joint. AJR Am J Roentgenol 187(3):794–799PubMedCrossRefGoogle Scholar
  17. 17.
    Bedson J, Croft PR (2008) The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 9:116PubMedCrossRefGoogle Scholar
  18. 18.
    Hellio Le Graverand MP, Vignon E, Otterness IG et al (2001) Early changes in lapine menisci during osteoarthritis development: part II: molecular alterations. Osteoarthritis Cartilage 9(1):65–72PubMedCrossRefGoogle Scholar
  19. 19.
    Krishnan N, Shetty SK, Williams A et al (2007) Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration? Arthritis Rheum 56(5):1507–1511PubMedCrossRefGoogle Scholar
  20. 20.
    Hede A, Larsen E, Sandberg H (1992) Partial versus total meniscectomy. A prospective, randomised study with long-term follow-up. J Bone Joint Surg Br 74(1):118–121PubMedGoogle Scholar
  21. 21.
    Schimmer RC, Brülhart KB, Duff C et al (1998) Arthroscopic partial meniscectomy: a 12-year follow-up and two-step evaluation of the long-term course. Arthroscopy 14(2):136–142PubMedCrossRefGoogle Scholar
  22. 22.
    Englund M, Roos EM, Lohmander LS (2003) Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 48(8):2178–2187PubMedCrossRefGoogle Scholar
  23. 23.
    Stone KR, Rodkey WG, Webber R et al (1992) Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am J Sports Med 20(2):104–111PubMedCrossRefGoogle Scholar
  24. 24.
    Stone KR, Steadman JR, Rodkey WG et al (1997) Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Joint Surg Am 79(12):1770–1777PubMedGoogle Scholar
  25. 25.
    Rodkey WG, DeHaven KE, Montgomery WH 3rd et al (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426PubMedCrossRefGoogle Scholar
  26. 26.
    Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N et al (2011) Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med 39(5):977–985PubMedCrossRefGoogle Scholar
  27. 27.
    Spencer SJ, Saithna A, Carmont MR et al (2012) Meniscal scaffolds: early experience and review of the literature. Knee. doi: 10.1016/j.knee.2012.01.006
  28. 28.
    Genovese E, Angeretti MG, Ronga M et al (2007) Follow-up of collagen meniscus implants by MRI. Radiol Med 112(7):1036–1048PubMedCrossRefGoogle Scholar
  29. 29.
    Monllau JC, Gelber PE, Abat F et al (2011) Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy 27(7):933–943PubMedCrossRefGoogle Scholar
  30. 30.
    Groot JD (2010) Actifit, polyurethane meniscus implant: basic science. The meniscus. Springer, BerlinGoogle Scholar
  31. 31.
    Tienen TG, Heijkants RG, de Groot JH et al (2006) Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med 34(1):64–71PubMedCrossRefGoogle Scholar
  32. 32.
    Welsing RT, van Tienen TG, Ramrattan N et al (2008) Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am J Sports Med 36(10):1978–1989PubMedCrossRefGoogle Scholar
  33. 33.
    Maher SA, Rodeo SA, Doty SB et al (2010) Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy 26(11):1510–1519PubMedCrossRefGoogle Scholar
  34. 34.
    Brophy RH, Cottrell J, Rodeo SA et al (2010) Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. J Biomed Mater Res A 92(3):1154–1161PubMedGoogle Scholar
  35. 35.
    Verdonk P, Beaufils P, Bellemans J et al (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40(4):844–853PubMedCrossRefGoogle Scholar
  36. 36.
    Elattar M, Dhollander A, Verdonk R et al (2011) Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc 19(2):147–157PubMedCrossRefGoogle Scholar
  37. 37.
    Lee BS, Chung JW, Kim JM et al (2012) Morphologic changes in fresh-frozen meniscus allografts over 1 year: a prospective magnetic resonance imaging study on the width and thickness of transplants. Am J Sports Med 40(6):1384–1391PubMedCrossRefGoogle Scholar
  38. 38.
    Wada Y, Amiel M, Harwood F et al (1998) Architectural remodeling in deep frozen meniscal allografts after total meniscectomy. Arthroscopy 14(3):250–257PubMedCrossRefGoogle Scholar
  39. 39.
    Messner K, Lohmander LS, Gillquist J (1993) Cartilage mechanics and morphology, synovitis and proteoglycan fragments in rabbit joint fluid after prosthetic meniscal substitution. Biomaterials 14(3):163–168PubMedCrossRefGoogle Scholar
  40. 40.
    Messner K (1994) Meniscal substitution with a Teflon-periosteal composite graft: a rabbit experiment. Biomaterials 15(3):223–230PubMedCrossRefGoogle Scholar
  41. 41.
    Sommerlath K, Gallino M, Gillquist J (1992) Biomechanical characteristics of different artificial substitutes for rabbit medial meniscus and effect of prosthesis size on knee cartilage. Clin Biomech (Bristol, Avon) 7:97–103CrossRefGoogle Scholar
  42. 42.
    Klompmaker J, Jansen HW, Veth RP et al (1993) Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clin Mater 14(1):1–11PubMedCrossRefGoogle Scholar
  43. 43.
    Tienen TG, Heijkants RG, de Groot JH et al (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76(2):389–396PubMedGoogle Scholar
  44. 44.
    Kobayashi M, Toguchida J, Oka M (2003) Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 24(4):639–647PubMedCrossRefGoogle Scholar
  45. 45.
    Kobayashi M, Chang YS, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26(16):3243–3248PubMedCrossRefGoogle Scholar
  46. 46.
    Kelly BT, Robertson W, Potter HG et al (2007) Hydrogel meniscal replacement in the sheep knee: preliminary evaluation of chondroprotective effects. Am J Sports Med 35(1):43–52PubMedCrossRefGoogle Scholar
  47. 47.
    Holloway JL, Lowman AM, Palmese GR (2010) Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 6(12):4716–4724PubMedCrossRefGoogle Scholar
  48. 48.
    Chiari C, Koller U, Dorotka R et al (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14(10):1056–1065PubMedCrossRefGoogle Scholar
  49. 49.
    Kon E, Chiari C, Marcacci M et al (2008) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A 14(6):1067–1080PubMedCrossRefGoogle Scholar
  50. 50.
    Kon E, Filardo G, Tschon M et al (2012) Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A 18(15–16):1573–1582PubMedCrossRefGoogle Scholar
  51. 51.
    Elsner JJ, Portnoy S, Zur G et al (2010) Design of a free-floating polycarbonate-urethane meniscal implant using finite element modeling and experimental validation. J Biomech Eng 132(9):095001PubMedCrossRefGoogle Scholar
  52. 52.
    Linder-Ganz E, Elsner JJ, Danino A et al (2010) A novel quantitative approach for evaluating contact mechanics of meniscal replacements. J Biomech Eng 132(2):024501PubMedCrossRefGoogle Scholar
  53. 53.
    Zur G, Linder-Ganz E, Elsner JJ et al (2010) Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc 19(2):255–263PubMedCrossRefGoogle Scholar
  54. 54.
    Kelly BT, Potter HG, Deng XH et al (2006) Meniscal allograft transplantation in the sheep knee: evaluation of chondroprotective effects. Am J Sports Med 34(9):1464–1477PubMedCrossRefGoogle Scholar
  55. 55.
    Balint E (2009) Development of a fiber-reinforced meniscus scaffold. The State University of New Jersey/University of Medicine and Dentistry of New Jersey, New BrunswickGoogle Scholar
  56. 56.
    Balint E, Gatt CJ Jr, Dunn MG (2011) Design and mechanical evaluation of a novel fiber-reinforced scaffold for meniscus replacement. J Biomed Mater Res A 100(1):195–202PubMedGoogle Scholar
  57. 57.
    Mandal BB, Park SH, Gil ES et al (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32(2):639–651PubMedCrossRefGoogle Scholar
  58. 58.
    Dürselen L, Gruchenberg K, Friemert B et al (2012) In vivo performance of a silk derived scaffold (FibroFix™) for partial meniscal replacement in an ovine model. Paper No. 0218, Trans Annu Meet Orthop Res SocGoogle Scholar
  59. 59.
    Yan LP, Oliveira JM, Oliveira AL et al (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301PubMedCrossRefGoogle Scholar
  60. 60.
    Maher SA, Rodeo SA, Potter HG et al (2011) A pre-clinical test platform for the functional evaluation of scaffolds for musculoskeletal defects: the meniscus. HSS J 7(2):157–163PubMedCrossRefGoogle Scholar
  61. 61.
    Reguzzoni M, Manelli A, Ronga M et al (2005) Histology and ultrastructure of a tissue-engineered collagen meniscus before and after implantation. J Biomed Mater Res B Appl Biomater 74(2):808–816PubMedGoogle Scholar
  62. 62.
    Hannink G, van Tienen TG, Schouten AJ et al (2010) Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant. Knee Surg Sports Traumatol Arthrosc 19(3):441–451PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anne Christiane Theodora Vrancken
    • 1
    Email author
  • Pieter Buma
    • 1
  • Tony George van Tienen
    • 1
    • 2
  1. 1.Orthopaedic Research LabRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of Orthopaedic SurgeryViaSana ClinicMillThe Netherlands

Personalised recommendations