International Orthopaedics

, Volume 36, Issue 11, pp 2347–2354 | Cite as

Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures

  • Hagen Andruszkow
  • Michael Frink
  • Cornelia Frömke
  • Amir Matityahu
  • Christian Zeckey
  • Philipp Mommsen
  • Stefanie Suntardjo
  • Christian Krettek
  • Frank Hildebrand
Original Paper



To describe the quality of osteosynthesis after intertrochanteric fractures evaluation of tip apex distance (TAD) and position of the hip screw have been established. Furthermore, a slightly valgus fracture reduction has been suggested to reduce the risk of cut-out failure. However, uniform recommendations for optimal screw positioning and fracture reduction are still missing. The purpose of our study was to confirm potential risk factors for cut-out of hip screws of intertrochanteric fractures and to provide recommendations for practical clinical use.


A retrospective analysis of all patients with intertrochanteric fractures treated with a DHS or a gamma nail between January of 2007 and May of 2010 was performed at a level I trauma center.


Two hundred thirty-five patients with intertrochanteric fractures after intra- and extramedullary stabilization were analyzed. A TAD of more than 25 mm was demonstrated to be the most important factor for cut-out in stable and unstable fractures. Fracture reduction with a valgus NSA of 5–10° was associated with a trend towards a lower rate of screw cut-out while an anterior placement of the screw (Parker’s ratio index of <40) significantly increased cut-out incidence.


According to our results, the TAD should not exceed 25 mm in stable (AO/OTA A1) as well as unstable (AO/OTA A2) fractures. An increased anterior hip screw placement should be avoided while fracture reduction with a slight valgus Neck Shaft seems favorable.


Fracture Reduction Screw Placement Unstable Fracture Intertrochanteric Fracture Neck Shaft Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hartholt KA, van Beeck EF, Polinder S, van der Velde N, van Lieshout EM, Panneman MJ, van der Cammen TJ, Patka P (2011) Societal consequences of falls in the older population: injuries, healthcare costs, and long-term reduced quality of life. J Trauma 71(3):748–753. doi: 10.1097/TA.0b013e3181f6f5e5 PubMedCrossRefGoogle Scholar
  2. 2.
    Lobo-Escolar A, Joven E, Iglesias D, Herrera A (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41(12):1312–1316. doi: 10.1016/j.injury.2010.08.009 PubMedCrossRefGoogle Scholar
  3. 3.
    Pajarinen J, Lindahl J, Savolainen V, Michelsson O, Hirvensalo E (2004) Femoral shaft medialisation and neck-shaft angle in unstable pertrochanteric femoral fractures. Int Orthop 28(6):347–353. doi: 10.1007/s00264-004-0590-x PubMedGoogle Scholar
  4. 4.
    Chirodian N, Arch B, Parker MJ (2005) Sliding hip screw fixation of trochanteric hip fractures: outcome of 1024 procedures. Injury 36(6):793–800. doi: 10.1016/j.injury.2005.01.017 PubMedCrossRefGoogle Scholar
  5. 5.
    Guven M, Yavuz U, Kadioglu B, Akman B, Kilincoglu V, Unay K, Altintas F (2010) Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw. Orthop Traumatol Surg Res 96(1):21–27. doi: 10.1016/j.rcot.2009.11.004 PubMedCrossRefGoogle Scholar
  6. 6.
    Utrilla AL, Reig JS, Munoz FM, Tufanisco CB (2005) Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma 19(4):229–233PubMedCrossRefGoogle Scholar
  7. 7.
    Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ (2010) A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Joint Surg Am 92(4):792–798. doi: 10.2106/JBJS.I.00508 PubMedCrossRefGoogle Scholar
  8. 8.
    Al-yassari G, Langstaff RJ, Jones JW, Al-Lami M (2002) The AO/ASIF proximal femoral nail (PFN) for the treatment of unstable trochanteric femoral fracture. Injury 33(5):395–399PubMedCrossRefGoogle Scholar
  9. 9.
    Bojan AJ, Beimel C, Speitling A, Taglang G, Ekholm C, Jonsson A (2010) 3066 Consecutive gamma nails. 12 Years experience at a single centre. BMC Musculoskelet Disord 11:133. doi: 10.1186/1471-2474-11-133 PubMedCrossRefGoogle Scholar
  10. 10.
    Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77(7):1058–1064PubMedGoogle Scholar
  11. 11.
    Parker MJ (1992) Cutting-out of the dynamic hip screw related to its position. J Bone Joint Surg Br 74(4):625PubMedGoogle Scholar
  12. 12.
    Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34(8):1273–1276. doi: 10.1007/s00264-009-0866-2 PubMedCrossRefGoogle Scholar
  13. 13.
    Parker MJ (1993) Valgus reduction of trochanteric fractures. Injury 24(5):313–316PubMedCrossRefGoogle Scholar
  14. 14.
    Walton NP, Wynn-Jones H, Ward MS, Wimhurst JA (2005) Femoral neck-shaft angle in extra-capsular proximal femoral fracture fixation; does it make a TAD of difference? Injury 36(11):1361–1364. doi: 10.1016/j.injury.2005.06.039 PubMedCrossRefGoogle Scholar
  15. 15.
    Geller JA, Saifi C, Morrison TA, Macaulay W (2010) Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop 34(5):719–722. doi: 10.1007/s00264-009-0837-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audige L (2007) Fracture and dislocation classification compendium - 2007: orthopaedic trauma association classification, database and outcomes committee. J Orthop Trauma 21(10 Suppl):S1–133PubMedCrossRefGoogle Scholar
  17. 17.
    Baumgaertner MR, Solberg BD (1997) Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg Br 79(6):969–971PubMedCrossRefGoogle Scholar
  18. 18.
    Wilson JD, Eardley W, Odak S, Jennings A (2011) To what degree is digital imaging reliable? validation of femoral neck shaft angle measurement in the era of picture archiving and communication systems. Br J Radiol 84(1000):375–379. doi: 10.1259/bjr/29690721 PubMedCrossRefGoogle Scholar
  19. 19.
    Agresti A, Caffo B (2000) Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The Am Stat 54(4):280–288Google Scholar
  20. 20.
    Aros B, Tosteson AN, Gottlieb DJ, Koval KJ (2008) Is a sliding hip screw or im nail the preferred implant for intertrochanteric fracture fixation? Clin Orthop Relat Res 466(11):2827–2832. doi: 10.1007/s11999-008-0285-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Anglen JO, Weinstein JN (2008) Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American board of orthopaedic surgery database. J Bone Joint Surg Am 90(4):700–707. doi: 10.2106/JBJS.G.00517 PubMedCrossRefGoogle Scholar
  22. 22.
    Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N (2009) The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury 40(4):428–432. doi: 10.1016/j.injury.2008.10.014 PubMedCrossRefGoogle Scholar
  23. 23.
    Verhofstad MH, van der Werken C (2004) DHS osteosynthesis for stable pertrochanteric femur fractures with a two-hole side plate. Injury 35(10):999–1002. doi: 10.1016/j.injury.2003.10.030 PubMedCrossRefGoogle Scholar
  24. 24.
    Kay RM, Jaki KA, Skaggs DL (2000) The effect of femoral rotation on the projected femoral neck-shaft angle. J Pediatr Orthop 20(6):736–739PubMedCrossRefGoogle Scholar
  25. 25.
    Marmor M, Nystuen C, Ehemer N, McClellan RT, Matityahu A (2011) Accuracy of in situ neck-shaft angle and shortening measurements of the anatomically reduced, varus malreduced and shortened proximal femur: can we believe what we see on the postoperative films? Injury. doi: 10.1016/j.injury.2011.10.010

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hagen Andruszkow
    • 1
  • Michael Frink
    • 1
  • Cornelia Frömke
    • 3
  • Amir Matityahu
    • 2
  • Christian Zeckey
    • 1
  • Philipp Mommsen
    • 1
  • Stefanie Suntardjo
    • 1
  • Christian Krettek
    • 1
  • Frank Hildebrand
    • 1
  1. 1.Trauma DepartmentHannover Medical SchoolHannoverGermany
  2. 2.Department of Orthopedic Surgery, Orthopaedic Trauma InstituteUniversity of California, San Francisco, San Francisco General HospitalSan FranciscoUSA
  3. 3.Institute of Biostatistics, Hannover Medical SchoolHannoverGermany

Personalised recommendations