Advertisement

International Orthopaedics

, Volume 36, Issue 4, pp 845–852 | Cite as

Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis

  • Ali Hosseini
  • Parth Lodhia
  • Samuel K. Van de Velde
  • Peter D. Asnis
  • Bertram Zarins
  • Thomas J. Gill
  • Guoan LiEmail author
Original Paper

Abstract

Purpose

It has been reported that technical error in positioning the graft tunnel is the most common problem in anterior cruciate ligament (ACL) reconstruction. The objective of this study was to quantitatively evaluate femoral and tibial tunnel positions and intra-articular graft orientation of primary ACL reconstruction in patients who had undergone revision ACL reconstruction. We postulated that this patient cohort had a nonanatomically positioned tunnel and graft orientation.

Methods

Twenty-six patients who had undergone a revision ACL were investigated. Clinical magnetic resonance (MR) images prior to revision were analysed. Three-dimensional models of bones and tunnels on the femur and tibia were created. Intra-articular graft orientation was measured in axial, sagittal and coronal planes. Graft positions were measured on the tibial plateau as a percentage from anterior to posterior and medial to lateral; graft positions on the femur were measured using the quadrant method.

Results

Sagittal elevation angle for failed ACL reconstruction graft (69.6° ± 13.4°) was significantly greater (p < 0.05) than that of the native anteromedial (AM) and posterolateral (PL) bundles of the ACL (AM 56.2° ± 6.1°, PL 55.5° ± 8.1°). In the transverse plane, the deviation angle of the failed graft (37.3° ± 21.0°) was significantly greater than native ACL bundles. The tibial tunnel in this patient cohort was placed posteromedially and medially to the anatomical AM and PL bundles, respectively. The femoral tunnel was placed anteriorly to the anatomical AM and PL bundles.

Conclusions

This study reveals that both the tibial and femoral tunnel positions and consequently the intra-articular graft orientation in this patient group with failed ACL reconstruction were nonanatomical when compared with native ACL values. The results can be used to improve tunnel placement in ACL reconstruction.

Keywords

Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Femoral Tunnel Tibial Tunnel Tunnel Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Dr. Bijoy Thomas, Dr. Michael Kozanek, and Mr. Hemanth Gadikota for their technical assistance. This study was supported by National Institute of Health (5R01AR055612-04 and F32 AR056451).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bach BR Jr, Jones GT, Sweet FA, Hager CA (1994) Arthroscopy-assisted anterior cruciate ligament reconstruction using patellar tendon substitution. Two- to four-year follow-up results. Am J Sports Med 22(6):758–767PubMedCrossRefGoogle Scholar
  2. 2.
    Bach BR Jr, Levy ME, Bojchuk J, Tradonsky S, Bush-Joseph CA, Khan NH (1998) Single-incision endoscopic anterior cruciate ligament reconstruction using patellar tendon autograft. Minimum two-year follow-up evaluation. Am J Sports Med 26(1):30–40PubMedGoogle Scholar
  3. 3.
    Bach BR Jr, Tradonsky S, Bojchuk J, Levy ME, Bush-Joseph CA, Khan NH (1998) Arthroscopically assisted anterior cruciate ligament reconstruction using patellar tendon autograft. Five- to nine-year follow-up evaluation. Am J Sports Med 26(1):20–29PubMedGoogle Scholar
  4. 4.
    Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrell FE Jr (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med 32(8):1986–1995PubMedCrossRefGoogle Scholar
  5. 5.
    Carson EW, Anisko EM, Restrepo C, Panariello RA, O'Brien SJ, Warren RF (2004) Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg 17(3):127–132PubMedGoogle Scholar
  6. 6.
    Kamath GV, Redfern JC, Greis PE, Burks RT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39(1):199–217PubMedCrossRefGoogle Scholar
  7. 7.
    Harner CD, Giffin JR, Dunteman RC, Annunziata CC, Friedman MJ (2001) Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. Instr Course Lect 50:463–474PubMedGoogle Scholar
  8. 8.
    Sommer C, Friederich NF, Muller W (2000) Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 8(4):207–213PubMedCrossRefGoogle Scholar
  9. 9.
    Marchant BG, Noyes FR, Barber-Westin SD, Fleckenstein C (2010) Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med 38(10):1987–1996PubMedCrossRefGoogle Scholar
  10. 10.
    Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84-A(6):907–914PubMedGoogle Scholar
  11. 11.
    Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31(1):83–86PubMedGoogle Scholar
  12. 12.
    Outerbridge RE (2001) The etiology of chondromalacia patellae. 1961. Clin Orthop Relat Res 389:5–8PubMedCrossRefGoogle Scholar
  13. 13.
    Outerbridge RE, Dunlop JA (1975) The problem of chondromalacia patellae. Clin Orthop Relat Res 110:177–196PubMedCrossRefGoogle Scholar
  14. 14.
    Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT, Rubash HE, Li G (2008) In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology (Oxford) 47(11):1622–1627CrossRefGoogle Scholar
  15. 15.
    Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246PubMedCrossRefGoogle Scholar
  16. 16.
    Hosseini A, Gill TJ, Li G (2009) In vivo anterior cruciate ligament elongation in response to axial tibial loads. J Orthop Sci 14(3):298–306PubMedCrossRefGoogle Scholar
  17. 17.
    Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 88(8):1826–1834PubMedCrossRefGoogle Scholar
  18. 18.
    Van de Velde SK, Bingham JT, Hosseini A, Kozanek M, DeFrate LE, Gill TJ, Li G (2009) Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum 60(12):3693–3702PubMedCrossRefGoogle Scholar
  19. 19.
    DeFrate LE, Sun H, Gill TJ, Rubash HE, Li G (2004) In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J Biomech 37(10):1499–1504PubMedCrossRefGoogle Scholar
  20. 20.
    Li G, DeFrate LE, Sun H, Gill TJ (2004) In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med 32(6):1415–1420PubMedCrossRefGoogle Scholar
  21. 21.
    Li G, Gil J, Kanamori A, Woo SL (1999) A validated three-dimensional computational model of a human knee joint. J Biomech Eng 121(6):657–662PubMedCrossRefGoogle Scholar
  22. 22.
    Kozanek M, Hosseini A, Liu F, Van de Velde SK, Gill TJ, Rubash HE, Li G (2009) Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech 42(12):1877–1884PubMedCrossRefGoogle Scholar
  23. 23.
    Ahn JH, Lee SH, Yoo JC, Ha HC (2007) Measurement of the graft angles for the anterior cruciate ligament reconstruction with transtibial technique using postoperative magnetic resonance imaging in comparative study. Knee Surg Sports Traumatol Arthrosc 15(11):1293–1300PubMedCrossRefGoogle Scholar
  24. 24.
    Jordan SS, DeFrate LE, Nha KW, Papannagari R, Gill TJ, Li G (2007) The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 35(4):547–554PubMedCrossRefGoogle Scholar
  25. 25.
    Scanlan SF, Blazek K, Chaudhari AM, Safran MR, Andriacchi TP (2009) Graft orientation influences the knee flexion moment during walking in patients with anterior cruciate ligament reconstruction. Am J Sports Med 37(11):2173–2178PubMedCrossRefGoogle Scholar
  26. 26.
    Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S, Fu FH (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 92(6):1418–1426PubMedCrossRefGoogle Scholar
  27. 27.
    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–21, discussion 21–12PubMedGoogle Scholar
  28. 28.
    Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor Award paper. Arthroscopy 19(3):297–304PubMedCrossRefGoogle Scholar
  29. 29.
    Markolf KL, Jackson SR, McAllister DR (2010) A comparison of 11 o'clock versus oblique femoral tunnels in the anterior cruciate ligament-reconstructed knee: knee kinematics during a simulated pivot test. Am J Sports Med 38(5):912–917PubMedCrossRefGoogle Scholar
  30. 30.
    Scopp JM, Jasper LE, Belkoff SM, Moorman CT 3rd (2004) The effect of oblique femoral tunnel placement on rotational constraint of the knee reconstructed using patellar tendon autografts. Arthroscopy 20(3):294–299PubMedCrossRefGoogle Scholar
  31. 31.
    Fujimoto E, Sumen Y, Deie M, Yasumoto M, Kobayashi K, Ochi M (2004) Anterior cruciate ligament graft impingement against the posterior cruciate ligament: diagnosis using MRI plus three-dimensional reconstruction software. Magn Reson Imaging 22(8):1125–1129PubMedCrossRefGoogle Scholar
  32. 32.
    Pearle AD, Shannon FJ, Granchi C, Wickiewicz TL, Warren RF (2008) Comparison of 3-dimensional obliquity and anisometric characteristics of anterior cruciate ligament graft positions using surgical navigation. Am J Sports Med 36(8):1534–1541PubMedCrossRefGoogle Scholar
  33. 33.
    Steckel H, Vadala G, Davis D, Fu FH (2006) 2D and 3D 3-tesla magnetic resonance imaging of the double bundle structure in anterior cruciate ligament anatomy. Knee Surg Sports Traumatol Arthrosc 14(11):1151–1158PubMedCrossRefGoogle Scholar
  34. 34.
    Ayerza MA, Muscolo DL, Costa-Paz M, Makino A, Rondon L (2003) Comparison of sagittal obliquity of the reconstructed anterior cruciate ligament with native anterior cruciate ligament using magnetic resonance imaging. Arthroscopy 19(3):257–261PubMedCrossRefGoogle Scholar
  35. 35.
    Kopf S, Forsythe B, Wong AK, Tashman S, Anderst W, Irrgang JJ, Fu FH (2010) Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am 92(6):1427–1431PubMedCrossRefGoogle Scholar
  36. 36.
    Abebe ES, Moorman CT 3rd, Dziedzic TS, Spritzer CE, Cothran RL, Taylor DC, Garrett WE Jr, DeFrate LE (2009) Femoral tunnel placement during anterior cruciate ligament reconstruction: an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel-independent techniques. Am J Sports Med 37(10):1904–1911PubMedCrossRefGoogle Scholar
  37. 37.
    Kopf S, Pombo MW, Shen W, Irrgang JJ, Fu FH (2011) The ability of 3 different approaches to restore the anatomic anteromedial bundle femoral insertion site during anatomic anterior cruciate ligament reconstruction. Arthroscopy 27(2):200–206PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ali Hosseini
    • 1
  • Parth Lodhia
    • 1
    • 2
  • Samuel K. Van de Velde
    • 1
  • Peter D. Asnis
    • 1
  • Bertram Zarins
    • 1
  • Thomas J. Gill
    • 1
  • Guoan Li
    • 1
    Email author
  1. 1.Bioengineering Laboratory, Department of Orthopaedic SurgeryMassachusetts General Hospital/Harvard Medical SchoolBostonUSA
  2. 2.University of British ColumbiaVancouverCanada

Personalised recommendations