International Orthopaedics

, Volume 36, Issue 1, pp 111–117 | Cite as

Single stage corpectomy and instrumentation in the treatment of pathological fractures in the lumbar spine

  • Stefan M. Knoeller
  • Oliver Huwert
  • Tilman Wolter
Original Paper



Corpectomy and implantation of titanium cages is standard in pathological fracture treatment but additional single ventral instrumentation remains controversial with regard to rotational stability.


This study included 45 patients suffering from vertebral metastases with spinal stenosis, instability and/or neurological deficits secondary to pathological lumbar spine fractures and bone mineral density (BMD) ≥1.20 g/cm2. The clinical results of a single stage anterior decompression with corpectomy defect restoration with titanium cage and single double rod system in patients were evaluated at mean 36 months postoperatively with follow-up neurological and radiological exams at three months then every six months.

Evaluation of neurological recovery included grading following a modified Frankel scale. Contentment, disability and actual pain were evaluated using the visual analogue scale (VAS) and Oswestry disability index (ODI). BMD was measured using dual-energy X-ray absorptiometry (DXA).


Postoperative neurological evaluations showed improvement in all patients. In the radiological follow-up in 40 patients (89%) findings were similar compared to the postoperative control. In five patients (11%) a loss of correction at a mean of 8° degrees (Cobb angle) secondary to cage subsidence occurred. No breakage of the device or displacement of the instrumentation was seen. Overall the Frankel scale improved 0.65 points (p < 0.05) and the ODI improved 40.69 points (p < 0.05).


In lumbar spine fractures of metastatic origin with stenosis, instability and/or neurological deficit, a single stage ventral decompression and instrumentation in patients with BMD ≥1.20 g/cm2 should be considered.


Bone Mineral Density Spinal Canal Pathological Fracture Oswestry Disability Index Spinal Stenosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Eble MJ, Eckert W, Wannenmacher M (1995) Value of local radiotherapy in treatment of osseous metastases, pathological fractures and spinal cord compression. Radiologe 35(1):47–54PubMedGoogle Scholar
  2. 2.
    Kostuik JP, Errico TJ, Gleason TF, Errico CC (1988) Spinal stabilization of vertebral column tumors. Spine 13(3):250–256PubMedCrossRefGoogle Scholar
  3. 3.
    Buchelt M, Windhager R, Kiss H, Schneider B, Lack W, Kotz R (1996) Surgical treatment of spinal metastases. Z Orthop Ihre Grenzgeb 134(3):263–268PubMedCrossRefGoogle Scholar
  4. 4.
    Dominkus M, Krepler P, Schwameis E, Kotz R (1998) Surgical therapy of spinal metastases. Orthopade 27(5):282–286PubMedGoogle Scholar
  5. 5.
    Oda I, Cunningham BW, Abumi K, Kaneda K, McAfee PC (1999) The stability of reconstruction methods after thoracolumbar total spondylectomy. An in vitro investigation. Spine 24(16):1634–1638PubMedCrossRefGoogle Scholar
  6. 6.
    Quint U, Wilke HJ, Loer F, Claes LE (1998) Functional sequelae of surgical decompression of the lumbar spine—a biomechanical study in vitro. Z Orthop Ihre Grenzgeb 136(4):350–357PubMedCrossRefGoogle Scholar
  7. 7.
    Siegal T, Robin G, Lubetzki-Korn I, Fuks Z (1982) Anterior decompression of the spine for metastatic epidural cord compression: a promising avenue of therapy? Ann Neurol 11(1):28–34. doi: 10.1002/ana.410110106 PubMedCrossRefGoogle Scholar
  8. 8.
    Harrington KD (1984) Anterior cord decompression and spinal stabilization for patients with metastatic lesions of the spine. J Neurosurg 61(1):107–117PubMedCrossRefGoogle Scholar
  9. 9.
    Scoville WB, Palmer AH, Samra K, Chong G (1967) The use of acrylic plastic for vertebral replacement or fixation in metastatic disease of the spine. Technical note. J Neurosurg 27(3):274–279PubMedCrossRefGoogle Scholar
  10. 10.
    Harrington KD (1981) The use of methylmethacrylate for vertebral-body replacement and anterior stabilization of pathological fracture-dislocations of the spine due to metastatic malignant disease. J Bone Joint Surg Am 63(1):36–46PubMedGoogle Scholar
  11. 11.
    Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9(6):472–485PubMedCrossRefGoogle Scholar
  12. 12.
    Kanayama M, Ng JT, Cunningham BW, Abumi K, Kaneda K, McAfee PC (1999) Biomechanical analysis of anterior versus circumferential spinal reconstruction for various anatomic stages of tumor lesions. Spine 24(5):445–450PubMedCrossRefGoogle Scholar
  13. 13.
    Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23(5):543–550PubMedCrossRefGoogle Scholar
  14. 14.
    Wilke H (1996) Möglichkeiten und Grenzen der biomechanischen in vitro Testung von Wirbelsäulenimplantaten. Habilitationsschrift, Universität UlmGoogle Scholar
  15. 15.
    Wilke HJ, Kemmerich V, Claes LE, Arand M (2001) Combined anteroposterior spinal fixation provides superior stabilisation to a single anterior or posterior procedure. J Bone Joint Surg Br 83(4):609–617PubMedCrossRefGoogle Scholar
  16. 16.
    Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79(1):69–83PubMedGoogle Scholar
  17. 17.
    Zdeblick TA, Shirado O, McAfee PC, deGroot H, Warden KE (1991) Anterior spinal fixation after lumbar corpectomy. A study in dogs. J Bone Joint Surg Am 73(4):527–534PubMedGoogle Scholar
  18. 18.
    Lack W, Eyb R, Ramach W, Kotz R, Salzer M, Wagner O, Sunder-Plassmann M, Braun O (1987) Experiences with ventral stabilization in vertebral metastases in the area of the thoracic and lumbar spine. Z Orthop Ihre Grenzgeb 125(3):268–274PubMedCrossRefGoogle Scholar
  19. 19.
    Knöller S, Haag M (2001) Mittelfristige Ergebnisse nach ventraler Spondylodese mit dem Doppelstabsystem “Ventro-Fix”. Osteologie 10(S2):88Google Scholar
  20. 20.
    Knoller SM, Meyer G, Eckhardt C, Lill CA, Schneider E, Linke B (2005) Range of motion in reconstruction situations following corpectomy in the lumbar spine: a question of bone mineral density? Spine 30(9):E229–E235PubMedCrossRefGoogle Scholar
  21. 21.
    Tokuhashi Y, Matsuzaki H, Toriyama S, Kawano H, Ohsaka S (1990) Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine 15(11):1110–1113PubMedCrossRefGoogle Scholar
  22. 22.
    Mirbaha MM (1978) Exposure of the vertebral bodies of the proximal lumbar segments. Some anatomic points. Spine 3(4):329–335PubMedCrossRefGoogle Scholar
  23. 23.
    Kluba T, Giehl JP (2004) Distractible vertebral body replacement in patients with malignant vertebral destruction or osteoporotic burst fractures. Int Orthop 28(2):106–109. doi: 10.1007/s00264-003-0518-x PubMedCrossRefGoogle Scholar
  24. 24.
    Rollinghoff M, Zarghooni K, Schluter-Brust K, Sobottke R, Schlegel U, Eysel P, Delank KS (2010) Indications and contraindications for vertebroplasty and kyphoplasty. Arch Orthop Trauma Surg 130(6):765–774. doi: 10.1007/s00402-010-1083-6 PubMedCrossRefGoogle Scholar
  25. 25.
    Bradford DS, McBride GG (1987) Surgical management of thoracolumbar spine fractures with incomplete neurologic deficits. Clin Orthop Relat Res 218:201–216PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan M. Knoeller
    • 1
  • Oliver Huwert
    • 1
  • Tilman Wolter
    • 2
  1. 1.Department of Orthopaedic and Trauma SurgeryUniversity Hospital FreiburgFreiburgGermany
  2. 2.Interdisciplinary Pain CentreUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations