International Orthopaedics

, Volume 36, Issue 1, pp 73–78 | Cite as

Influence of total knee arthroplasty on patellar kinematics and contact characteristics

  • Hans Kainz
  • Wolfgang Reng
  • Peter Augat
  • Simone Wurm
Original Paper

Abstract

Purpose

Femoro-patellar complications are one of the most common problems after total knee arthroplasty (TKA). TKA components that reduce patellar loads and preserve physiological patellar kinematics should reduce these problems. Therefore, we evaluated the patellar kinematics and the retro-patellar contact characteristics in both the intact knee and in the TKA-knee.

Methods

Eight Thiel-embalmed cadaver knees were tested first intact and then after TKA using rotating as well as gliding inlay and with additional patellar resurfacing while flexing the knee from 0° to 100°. During the examination quadriceps and hamstring forces were applied.

Results

TKA with additional patellar resurfacing led to an increased retro-patellar pressure, a decreased contact area and an increased lateral movement. Although patellar kinematics could not be changed by using a gliding inlay compared to a rotating inlay, the gliding inlay improved retro-patellar contact characteristics by reducing the pressure and increasing the contact area, especially in higher flexion.

Conclusions

The increased retro-patellar pressure together with the increased lateral movement of the patella after TKA may be one important cause for anterior knee pain appearing after TKA. In view of the improved retro-patellar contact characteristics using a gliding inlay this inlay should be preferred, providing that the posterior cruciate ligament is intact.

References

  1. 1.
    Kessler O, Patil S, Colwell CW, D’Lima DD (2008) The effect of femoral component malrotation on patellar biomechanics. J Biomech 41:3332–3339PubMedCrossRefGoogle Scholar
  2. 2.
    Boyd AD, Ewald FC, Thomas WH, Poss R, Sledge CB (1993) Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 75:674–681PubMedGoogle Scholar
  3. 3.
    Skwara A, Tibesku CO, Ostermeier S, Stukenborg-Colsman C, Fuchs-Winkelmann S (2008) Differences in patellofemoral contact stresses between mobile-bearing and fixed-bearing total knee arthroplasties: a dynamic in vitro measurement. Arch Orthop Trauma Surg. doi:10.1007/s00402-008-0757-9 PubMedGoogle Scholar
  4. 4.
    Armstrong AD, Brien HJ, Dunning CE, King GJW, Johnson JA, Chess DG (2003) Patellar position after total knee arthroplasty. J Arthroplasty 18:458–465PubMedCrossRefGoogle Scholar
  5. 5.
    Campbell DG, Duncan WW, Ashworth M, Mintz A, Stirling J, Wakefield L et al (2006) Patellar resurfacing in total knee replacement. J Bone Joint Surg Br 88:734–739PubMedCrossRefGoogle Scholar
  6. 6.
    Li S, Chen Y, Su W, Zhao J, He S, Luo X (2010) Systematic review of patellar resurfacing in total knee arthroplasty. Int Orthop. doi:10.1007/s00264-010-1109-2 Google Scholar
  7. 7.
    Patel K, Raut V (2010) Patella in total knee arthroplasty: to resurface or not to—a cohort study of staged bilateral total knee arthroplasty. Int Orthop. doi:10.1007/s00264-010-1063-z PubMedGoogle Scholar
  8. 8.
    Anglin C, Brimacombe JM, Wilson DR, Masri BA, Greidanus NV, Tonetti J et al (2008) Intraoperative vs. weightbearing patellar kinematics in total knee arthroplasty a cadaveric study. Clin Biomech 23:60–70CrossRefGoogle Scholar
  9. 9.
    Chew JTH, Stewart NJ, Hanssen AD, Luo ZP, Rand JA, An KN (1997) Differences in patellar tracking and knee kinematics among three different total knee designs. Clin Orthop Relat Res 345:87–98PubMedCrossRefGoogle Scholar
  10. 10.
    Thiel W (1992) Die Konservierung ganzer Leichen in natürlichen Farben. Ann Anat 174:185–195PubMedCrossRefGoogle Scholar
  11. 11.
    Farahmand F, Senavongse W, Amis AA (1998) Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint. J Orthop Res 16:136–143PubMedCrossRefGoogle Scholar
  12. 12.
    Kapandji IA (2001) Funktionelle Anatomie der Gelenke. Georg Thieme Verlag, Stuttgart, pp 98–103Google Scholar
  13. 13.
    Lee TQ, Gerken AP, Glaser FE, Kim WC, Anzel SH (1997) Patellofemoral joint kinematics and contact pressure in total knee arthroplasties. Clin Orthop Relat Res 340:257–266PubMedCrossRefGoogle Scholar
  14. 14.
    Miller RK, Goodfellow JW, Murray DW, O’Connor JJ (1998) In vitro measurement of patellofemoral force after three types of knee replacement. J Bone Joint Surg Br 80:900–906PubMedCrossRefGoogle Scholar
  15. 15.
    Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (2001) The influence of femoral rollback on patellofemoral contact loads in total knee arthroplasty. J Arthroplasty 16:909–918PubMedCrossRefGoogle Scholar
  16. 16.
    Ostermeier S, Nowakowski A, Stukenborg-Colsman C (2003) Dynamische In-vitro-Druck- und Bewegungsmessung des LCS-Prothesensystems. Orthopade 32:292–295PubMedCrossRefGoogle Scholar
  17. 17.
    Hsu HC, Luo ZP, Rand JA, An KN (1997) Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty 12:74–83PubMedCrossRefGoogle Scholar
  18. 18.
    Patel VV, Hall K, Ries M, Lindsey C, Ozhinsky E, Lu Y et al (2003) Magnetic resonance imaging of patellofemoral kinematics with weight-bearing. J Bone Joint Surg Am 85:2419–2424PubMedGoogle Scholar
  19. 19.
    Tanzer M, McLean CA, Laxer E, Casey J, Ahmed AM (2001) Effect of femoral component designs on the contact and tracking characteristics of the unresurfaced patella in total knee arthroplasty. Can J Surg 44:127–133PubMedGoogle Scholar
  20. 20.
    MacIntyre NJ, Hill NA, Fellows RA, Ellis RE, Wilson DR (2006) Patellofemoral joint kinematics in individuals with and without patellofemoral pain syndrome. J Bone Joint Surg Am 88:2596–2605PubMedCrossRefGoogle Scholar
  21. 21.
    Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2010) Patellar tendon orientation and patellar tracking in male and female knees. J Orthop Res 28:322–328PubMedGoogle Scholar
  22. 22.
    Barink M, Meijerink H, Versonschot N, van Kampen A, de Waal MM (2007) Asymmetrical total knee arthroplasty does not improve patella tracking: a study without patellar resurfacing. Knee Surg Sports Traumatol Arthrosc 15:184–191PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson NA, Press JM, Koh JL, Hendrix RW, Zhang LQ (2009) In vivo noninvasive evaluation of abnormal patellar tracking during squatting in patients with patellofemoral pain. J Bone Joint Surg Am 9:558–566CrossRefGoogle Scholar
  24. 24.
    Powers CM, Lilley JC, Lee TQ (1998) The effects of axial and multi-plane loading of the extensor mechanism on the patellofemoral joint. Clin Biomech 13:616–624CrossRefGoogle Scholar
  25. 25.
    Sakai N, Luo ZP, Rand JA, An KN (1996) Quadriceps forces and patellar motion in the anatomical model of the patellofemoral joint. Knee 3:1–7CrossRefGoogle Scholar
  26. 26.
    Li G, DeFrate LE, Zayontz S, Park SE, Gill TJ (2004) The effect of tibiofemoral joint kinematics on patellofemoral contact pressures unter simulated muscle loads. J Orthop Res 22:801–806PubMedCrossRefGoogle Scholar
  27. 27.
    Kwak SD, Ahmad CS, Gardner TR, Grelsamer RP, Henry JH, Blankevoort L et al (2000) Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J Orthop Res 18:101–108PubMedCrossRefGoogle Scholar
  28. 28.
    Nagamine R, Otani T, White SE, McCarthy DS, Whiteside LA (1995) Patellar tracking measurement in the normal knee. J Orthop Res 13:115–122PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hans Kainz
    • 1
  • Wolfgang Reng
    • 2
  • Peter Augat
    • 1
  • Simone Wurm
    • 1
    • 3
  1. 1.Institute of BiomechanicsTrauma Center MurnauMurnauGermany
  2. 2.Orthopedic SurgeryKlinikum Garmisch-PartenkirchenGarmisch-PartenkirchenGermany
  3. 3.BG-Unfallklinik MurnauMurnauGermany

Personalised recommendations