Advertisement

International Orthopaedics

, Volume 36, Issue 1, pp 185–190 | Cite as

Comparison of articular cartilage images assessed by high-frequency ultrasound microscope and scanning acoustic microscope

  • Yoshihiro Hagiwara
  • Yoshifumi SaijoEmail author
  • Akira Ando
  • Yoshito Onoda
  • Hideaki Suda
  • Eiichi Chimoto
  • Kouki Hatori
  • Eiji Itoi
Original Paper

Abstract

Purpose

The purpose of this study was to compare images of a newly developed high-frequency ultrasound imaging system (HFUIS) and scanning acoustic microscope (SAM) and to calculate their Pearson product moment correlations with a view to applying HFUIS for clinical use.

Methods

Cylindrical cartilage–bone complexes from adult male Sprague-Dawley rats were obtained. The specimens were immersed in normal saline and scanned by HFUIS. Intensity by HFUIS was normalised by reflection from a steel plate at the same distance. After the scanning, specimens were fixed with paraformaldehyde, decalcified and embedded in paraffin. Thinly sliced tissues were prepared for SAM evaluation. After the scanning, three layers of articular cartilage (superficial, middle and deep) were independently evaluated and their relationships calculated.

Results

The superficial and deep layers indicated high relative intensity, whereas the middle layer showed nonhomogeneous relative intensity by HFUIS. A high relative intensity by HFUIS and high sound speed area by SAM had strong correlations (Pearson product moment correlation, superficial layer 0.704, middle layer 0.731).

Conclusions

HFUIS produced high-resolution images of the articular cartilage and its intensity was strongly correlated with sound speed by SAM.

Keywords

Articular Cartilage Subchondral Bone Sound Speed Middle Layer Pearson Product Moment Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This research was supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B).

References

  1. 1.
    Nieminen HJ, Julkunen P, Töyräs J, Jurvelin JS (2007) Ultrasound speed in articular cartilage under mechanical compression. Ultrasound Med Biol 11:1755–1766CrossRefGoogle Scholar
  2. 2.
    Zhang YQ, Jordan JM (2008) Epidemiology of osteoarthritis. Rheum Dis Clin North Am 34:515–529PubMedCrossRefGoogle Scholar
  3. 3.
    Felson DT (1988) Epidemiology of hip and knee osteoarthritis. Epidemiol Rev 10:1e–28eGoogle Scholar
  4. 4.
    O'Reilly SC, Jones A, Muir KR, Doherty M (1998) Quadriceps weakness in knee osteoarthritis: the effect on pain and disability. Ann Rheum Dis 57:588–594PubMedCrossRefGoogle Scholar
  5. 5.
    Altman RD, Moskowitz R (1998) Intraarticular sodium hyaluronate (Hyalgan) in the treatment of patients with osteoarthritis of the knee: a randomized clinical trial. Hyalgan Study Group. J Rheumatol 25:2203–2212PubMedGoogle Scholar
  6. 6.
    Tsai CY, Lee CL, Chai CY, Chen CH, Su JY, Huang HT, Huang MH (2007) The validity of in vitro ultrasonographic grading of osteoarthritic femoral condylar cartilage–a comparison with histologic grading. Osteoarthritis Cartilage 15:245–250PubMedCrossRefGoogle Scholar
  7. 7.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487e–504eGoogle Scholar
  8. 8.
    Buckwalter JA, Mankin HJ (1997) Articular cartilage, part II: degeneration and osteoarthritis, repair regeneration, and transplantation. J Bone Joint Surg Am 79:600–611Google Scholar
  9. 9.
    Aula AS, Töyräs J, Tiitu V, Jurvelin JS (2010) Simultaneous ultrasound measurement of articular cartilage and subchondaral bone. Osteoarthritis Cartilage 18:1570–1576PubMedCrossRefGoogle Scholar
  10. 10.
    Buckwalter JA, Martin J (1995) Degenrative joint disease. Clin Symp 47:1–32PubMedGoogle Scholar
  11. 11.
    Harcke HT, Grissom LE, Finkelstein MS (1988) Evaluation of the musculoskeletal system with sonography. AJR Am J Roentgenol 150:1253–1261PubMedGoogle Scholar
  12. 12.
    Lee CL, Huang MH, Chai CY, Chen CH, Su JY, Tien YC (2008) The validity of in vivo ultrasonographic grading of osteoarthritic femoral condylar cartilage: a comparison with in vitro ultrasonographic and histologic gradings. Osteoarthritis Cartilage 16:352–358PubMedCrossRefGoogle Scholar
  13. 13.
    Hozumi N, Yamashita R, Lee CK, Nagao M, Kobayashi K, Saijo Y, Tanaka M, Tanaka N, Ohtsuki S (2004) Time-frequency analysis for pulse driven ultrasonic microscopy for biological tissue characterization. Ultrasonics 42:717–722PubMedCrossRefGoogle Scholar
  14. 14.
    Saijo Y, Jorgensen S, Mondek P, Sefranek V, Paaske W (2002) Acoustic inhomogeneity of carotid arterial plaques determined by GHz frequency range microscopy. Ultrasound Med Biol 28:933–937PubMedCrossRefGoogle Scholar
  15. 15.
    Hagiwara Y, Saijo Y, Chimoto E, Akita H, Sasano Y, Matsumoto F, Kokubun S (2006) Increased elasticity of capsule after immobilization in a rat knee experimental model assessed by scanning acoustic microscopy. Ups J Med Sci 111:303–313PubMedCrossRefGoogle Scholar
  16. 16.
    Hagiwara Y, Saijo Y, Ando A, Chimoto E, Suda H, Onoda Y, Itoi E (2009) Ultrasonic intensity microscopy for imaging of living cells. Ultrasonics 49:386–388PubMedCrossRefGoogle Scholar
  17. 17.
    Hagiwara Y, Ando A, Chimoto E, Saijo Y, Ohmori-Matsuda K, Itoi E (2009) Changes of articular cartilage after immobilization in a rat knee contracture model. J Orthop Res 27:236–242PubMedCrossRefGoogle Scholar
  18. 18.
    Virén T, Saarakkala S, Jurvelin JS, Pulkkinen HJ, Tiitu V, Valonen P, Kiviranta I, Lammi MJ, Töyräs J (2010) Quantitative evaluation of spontaneously and surgically repaired rabbit articular cartilage using intra-articular ultrasound method in situ. Ultrasound Med Biol 36:833–839PubMedCrossRefGoogle Scholar
  19. 19.
    Anderson-MacKenzie JM, Quasnichka HL, Starr RL, Lewis EJ, Billingham ME, Bailey AJ (2005) Fundamental subchondral bone changes in spontaneous knee osteoarthritis. Int J Biochem Cell Biol 37:224–236PubMedCrossRefGoogle Scholar
  20. 20.
    Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26:1–27PubMedCrossRefGoogle Scholar
  21. 21.
    Vogt M, Ermert H (2007) In vivo ultrasound biomicroscopy of skin: spectral system characteristics and inverse filtering optimization. IEEE Trans Ultrason Ferroelectr Freq Control 54:1551–1559PubMedCrossRefGoogle Scholar
  22. 22.
    Saijo Y, Kobayashi K, Okada N, Hozumi N, Hagiwara Y, Tanaka A, Iwamoto T (2008) High frequency ultrasound imaging of surface and subsurface structures of fingerprints. Conf Proc IEEE Eng Med Biol Soc 2008:2173–2176PubMedGoogle Scholar
  23. 23.
    Grassi W, Lamanna G, Farina A, Cervini C (1999) Sonographic imaging of normal and osteoarthritic cartilage. Semin Arthritis Rheum 28:398–403PubMedCrossRefGoogle Scholar
  24. 24.
    McCune WJ, Dedrick DK, Aisen AM, MacGuire A (1990) Sonographic evaluation of osteoarthritic femoral condylar cartilage. Correlation with operative findings. Clin Orthop Relat Res 254:230–235PubMedGoogle Scholar
  25. 25.
    Chérin E, Saïed A, Pellaumail B, Loeuille D, Laugier P, Gillet P, Netter P, Berger G (2001) Assessment of rat articular cartilage maturation using 50-MHz quantitative ultrasonography. Osteoarthritis Cartilage 9:178–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yoshihiro Hagiwara
    • 1
  • Yoshifumi Saijo
    • 2
    Email author
  • Akira Ando
    • 1
  • Yoshito Onoda
    • 1
  • Hideaki Suda
    • 1
  • Eiichi Chimoto
    • 1
  • Kouki Hatori
    • 3
  • Eiji Itoi
    • 1
  1. 1.Department of Orthopaedic SurgeryTohoku University School of MedicineSendaiJapan
  2. 2.Department of Biomedical Imaging, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
  3. 3.Division of Advanced Prosthetic DentistryTohoku University School of DentistrySendaiJapan

Personalised recommendations