International Orthopaedics

, Volume 36, Issue 1, pp 57–64 | Cite as

Analysis of synovial fluid in knee joint of osteoarthritis:5 proteome patterns of joint inflammation based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

  • Xiaohua Pan
  • Liling Huang
  • Jiakai Chen
  • Yong Dai
  • Xiaofen Chen
Original Paper



The purpose of this study was to use matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in osteoarthritis research. Our aim was to find differentially expressed disease-related and condition-specific peptide in synovial fluid in the knee joint of patients suffering from osteoarthritis (OA), and to develop and validate the peptide classification model for OA diagnosis.


Based on the American College of Rheumatology criteria, 30 OA cases and ten healthy donors were enrolled and underwent analysis. Magnetic beads-based weak cation exchange chromatography (MB-WCX) was performed for sample processing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was conducted for peptide profile. ClinProt software 2.2 was used for data analysis and a genetic algorithm was created for class prediction.


Two peptide peaks were found which may be characterised as the potential diagnostic markers for OA. Two other significantly different peptide peaks were found in OA patients at a medium stage compared to the early and late stages. A genetic algorithm (GA) was used to establish differential diagnosis models of OA. As a result, the algorithm models marked 100% of OA, and of 97.92% of medium-stage OA.


This study demonstrated that use of proteomics methods to identify potential biomarkers of OA is possible, and the identified potential biomarkers may be potential markers for diagnosis and monitoring the progression of OA.


  1. 1.
    Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G (2005) Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage 13(3):198–205PubMedCrossRefGoogle Scholar
  2. 2.
    Conaghan PG, Felson D, Gold G, Lohmander S, Totterman S, Altman R (2006) MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthritis Cartilage 14(SupplA):A87–94Google Scholar
  3. 3.
    Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35PubMedCrossRefGoogle Scholar
  4. 4.
    Kang X, Fransen M, Zhang Y, Li H, Ke Y, Lu M et al (2009) The high prevalence of knee osteoarthritis in a rural Chinese population: the Wuchuan osteoarthritis study. Arthritis Rheum 61(5):641–647PubMedCrossRefGoogle Scholar
  5. 5.
    Williams F, Spector T (2008) Biomarkers in osteoarthritis. Arthritis Res Ther 10(1):101PubMedCrossRefGoogle Scholar
  6. 6.
    Gobezie R, Kho A, Krastins B, Sarracino DA, Thornhill TS, Chase M, Millett PJ, Lee DM (2007) High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther 9(2):R36PubMedCrossRefGoogle Scholar
  7. 7.
    Rousseau JC, Delmas DPD (2007) Biological markers in osteoarthritis. Nat Clin Pract Rheumatol 3:346–356PubMedCrossRefGoogle Scholar
  8. 8.
    Kojima K, Asmellash S, Klug CA, Grizzle WE, Mobley JA, Christein JD (2008) Applying proteomic-based biomarker tools for the accurate diagnosis of pancreatic cancer. J Gastrointest Surg 12(10):1683–1690PubMedCrossRefGoogle Scholar
  9. 9.
    Jacot W, Lhermitte L, Dossat N, Pujol JL, Molinari N, Daurès JP (2008) Serum proteomic profiling of lung cancer in high-risk groups and determination of clinical outcomes. J Thorac Oncol 3(8):840–850PubMedCrossRefGoogle Scholar
  10. 10.
    Ferino G, González-Díaz H, Delogu G, Podda G, Uriarte E (2008) Using spectral moments of spiral networks based on PSA/mass spectra outcomes to derive quantitative proteome-disease relationships (QPDRs) and predicting prostate cancer. Biochem Biophys Res Commun 372(2):320–325PubMedCrossRefGoogle Scholar
  11. 11.
    Amadei GA, Cho CF, Lewis JD, Luyt LG (2010) A fast, reproducible and low-cost method for sequence deconvolution of 'on-bead' peptides via 'on-target' maldi-TOF/TOF mass spectrometry. J Mass Spectrom 45(3):241–251PubMedCrossRefGoogle Scholar
  12. 12.
    Dong M, Wu M, Wang F, Qin H, Han G, Dong J (2010) Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest. Anal Chem 82(7):2907–2915PubMedCrossRefGoogle Scholar
  13. 13.
    Seibold E, Maier T, Kostrzewa M, Zeman E, Splettstoesser W (2010) Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. J Clin Microbiol 48(4):1061–1069PubMedCrossRefGoogle Scholar
  14. 14.
    Kondo N, Nishimura S (2009) MALDI-TOF mass-spectrometry-based versatile method for the characterization of protein kinases. Chemistry 15(6):1413–1421PubMedCrossRefGoogle Scholar
  15. 15.
    Braun J, Sieper J (2009) Classification criteria for rheumatoid arthritis and ankylosing spondylitis. Clin Exp Rheumatol 27:S68–S73PubMedGoogle Scholar
  16. 16.
    MacGregor AJ (1995) Classification criteria for rheumatoid arthritis. Baillières Clin Rheumatol 9(2):287–304PubMedCrossRefGoogle Scholar
  17. 17.
    Pfeiffer E (1975) A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc 23(10):433–441PubMedGoogle Scholar
  18. 18.
    Ketterlinus R, Hsieh SY, Teng SH, Lee H, Pusch W (2005) Fishing for biomarkers: analyzing mass spectrometry data with the new ClinPro Tools software. Biotechniques Suppl:37–40Google Scholar
  19. 19.
    Hartwig S, Kotzka J, Müller H, Müller-Wieland D, Eckel J, Lehr S (2009) Enhancing mass spectrometry based serum profiling by a combination of free flow electrophoresis and ClinProt. Arch Physiol Biochem 115(5):259–266PubMedCrossRefGoogle Scholar
  20. 20.
    Gianazza E, Mainini V, Castoldi G, Chinello C, Zerbini G, Bianchi C et al (2010) Different expression of fibrinopeptide A and related fragments in serum of type 1 diabetic patients with nephropathy. J Proteomics 73(3):593–601PubMedCrossRefGoogle Scholar
  21. 21.
    Chinello C, Gianazza E, Zoppis I, Mainini V, Galbusera C, Picozzi S et al (2010) Serum biomarkers of renal cell carcinoma assessed using a protein profiling approach based on ClinProt technique. Urology 75(4):842–847PubMedCrossRefGoogle Scholar
  22. 22.
    Ziganshin RKh, Alekseev DG, Arapidi GP, Ivanov VT, Moshkovskiĭ SA, Govorun VM (2008) Serum proteome profiling for ovarian cancer diagnosis using ClinProt magnetic bead technique and MALDI-TOF-mass-spectrometry. Biomed Khim 54(4):408–419PubMedGoogle Scholar
  23. 23.
    Timms JF, Cramer R, Camuzeaux S, Tiss A, Smith C, Burford B et al (2010) Peptides generated ex vivo from serum proteins by tumor-specific exopeptidases are not useful biomarkers in ovarian cancer. Clin Chem 56(2):262–271PubMedCrossRefGoogle Scholar
  24. 24.
    Chow SN, Chen RJ, Chen CH, Chang TC, Chen LC, Lee WJ et al (2010) Analysis of protein profiles in human epithelial ovarian cancer tissues by proteomic technology. Eur J Gynaecol Oncol 31(1):55–62PubMedGoogle Scholar
  25. 25.
    Gámez-Pozo A, Sánchez-Navarro I, Nistal M, Calvo E, Madero R, Díaz E et al (2009) MALDI profiling of human lung cancer subtypes. PLoS ONE 4(11):e7731PubMedCrossRefGoogle Scholar
  26. 26.
    Tsunemi S, Nakanishi T, Fujita Y, Bouras G, Miyamoto Y, Miyamoto A et al (2010) Proteomics-based identification of a tumor-associated antigen and its corresponding autoantibody in gastric cancer. Oncol Rep 23(4):949–956PubMedGoogle Scholar
  27. 27.
    Breton J, Gage MC, Hay AW, Keen JN, Wild CP, Donnellan C et al (2008) Proteomic screening of a cell line model of esophageal carcinogenesis identifies cathepsin D and aldo-keto reductase 1 C2 and 1B10 dysregulation in Barrett's esophagus and esophageal adenocarcinoma. J Proteome Res 7(5):1953–1962PubMedCrossRefGoogle Scholar
  28. 28.
    Zivanović S, Petrović-Rackov L, Zivanović A (2009) Arthrosonography and biomarkers in the evaluation of destructive knee cartilage osteoarthrosis. Srp Arh Celok Lek 137(11–12):653–658PubMedCrossRefGoogle Scholar
  29. 29.
    Richardot P, Charni-Ben Tabassi N, Toh L, Marotte H, Bay-Jensen AC, Miossec P et al (2009) Nitrated type III collagen as a biological marker of nitric oxide-mediated synovial tissue metabolism in osteoarthritis. Osteoarthritis Cartilage 17(10):1362–1367PubMedCrossRefGoogle Scholar
  30. 30.
    Qazi AA, Folkesson J, Pettersen PC, Karsdal MA, Christiansen C, Dam EB (2007) Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity. Osteoarthritis Cartilage 15(10):1199–1206PubMedCrossRefGoogle Scholar
  31. 31.
    Kraus VB, Kepler TB, Stabler T, Renner J, Jordan J (2010) First qualification study of serum biomarkers as indicators of total body burden of osteoarthritis. PLoS ONE 5(3):e9739PubMedCrossRefGoogle Scholar
  32. 32.
    Uchida T, Fukawa A, Uchida M, Fujita K, Saito K (2002) Application of a novel protein biochip technology for detection and identification of rheumatoid arthritis biomarkers in synovial fluid. J Proteome Res 1(6):495–499PubMedCrossRefGoogle Scholar
  33. 33.
    Kamphorst JJ, van der Heijden R, DeGroot J, Lafeber FP, Reijmers TH, van El B et al (2007) Profiling of endogenous peptides in human synovial fluid by NanoLC-MS: method validation and peptide identification. J Proteome Res 6(11):4388–4396PubMedCrossRefGoogle Scholar
  34. 34.
    Xiang Y, Matsui T, Matsuo K, Shimada K, Tohma S, Nakamura H et al (2007) Comprehensive investigation of disease-specific short peptides in sera from patients with systemic sclerosis: complement C3f-des-arginine, detected predominantly in systemic sclerosis sera, enhances proliferation of vascular endothelial cells. Arthritis Rheum 56(6):2018–2030PubMedCrossRefGoogle Scholar
  35. 35.
    Dai Y, Hu C, Wang L, Huang Y, Zhang L, Xiao X et al (2010) Serum peptidome patterns of human systemic lupus erythematosus based on magnetic bead separation and MALDI-TOF mass spectrometry analysis. Scand J Rheumatol 39(3):240–246PubMedCrossRefGoogle Scholar
  36. 36.
    Ruiz-Romero C, Carreira V, Rego I, Remeseiro S, López-Armada MJ, Blanco FJ (2008) Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. Proteomics 8(3):495–507PubMedCrossRefGoogle Scholar
  37. 37.
    Ruiz-Romero C, Calamia V, Mateos J, Carreira V, Martínez-Gomariz M, Fernández M et al (2009) Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteomics 8(1):172–189PubMedCrossRefGoogle Scholar
  38. 38.
    Bo GP, Zhou LN, He WF, Luo GX, Jia XF, Gan CJ et al (2009) Analyses of differential proteome of human synovial fibroblasts obtained from arthritis. Clin Rheumatol 28(2):191–199PubMedCrossRefGoogle Scholar
  39. 39.
    Chang X, Cui Y, Zong M, Zhao Y, Yan X, Chen Y et al (2009) Identification of proteins with increased expression in rheumatoid arthritis synovial tissues. J Rheumatol 36(5):872–880PubMedCrossRefGoogle Scholar
  40. 40.
    de Seny D, Fillet M, Meuwis MA, Geurts P, Lutteri L, Ribbens C et al (2005) Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry ProteinChip approach. Arthritis Rheum 52(12):3801–3812PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xiaohua Pan
    • 1
  • Liling Huang
    • 2
  • Jiakai Chen
    • 1
  • Yong Dai
    • 2
  • Xiaofen Chen
    • 1
  1. 1.Department of Orthopedics and TraumatologyThe Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital)ShenzhenPeople’ Republic of China
  2. 2.Clinical Medical Research CenterThe Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital)ShenzhenPeople’s Republic of China

Personalised recommendations