Advertisement

International Orthopaedics

, Volume 33, Issue 1, pp 243–248 | Cite as

Clinical and radiological results of arthroscopically treated tibial spine fractures in childhood

  • D. PerugiaEmail author
  • L. Basiglini
  • A. Vadalà
  • A. Ferretti
Original Paper

Abstract

The objective of this study is to report the clinical and radiological long-term follow-up evaluation of young patients arthroscopically treated for anterior tibial eminence fracture. Ten patients (mean age: 13.5 years) were treated between 1992 and 2006. At follow-up they were clinically and radiologically evaluated. Moreover, they underwent assessment with the International Knee Documentation Committee (IKDC) forms, Lysholm and Tegner knee scales and measurement with the KT-1000 arthrometer. At a mean follow-up of 85.8 months, all of the patients reported a subjective good-excellent outcome. Objectively, the Lachman test was negative in seven patients and positive in three patients; six patients (60%) registered a slight (+) to mild (++) pivot-glide test. The mean value of KT-1000 arthrometer measurements was 3 mm; all knee scales showed satisfactory results. Radiological exam always showed good healing of the fracture. Fractures of the tibial spine often lead to anterior and rotational knee laxity. However, despite this instrumental finding, patients usually do not report any type of restriction in their functional or sports activities.

Keywords

Anterior Cruciate Ligament Tibial Eminence International Knee Documentation Committee Knee Laxity Lachman Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Le but de cette étude est de rapporter le suivi clinique et radiologique à long terme de jeunes patients traités par arthroscopie pour fracture des épines tibiales. 10 patients (d’âge moyen de 13,5 ans) ont été traités entre 1992 et 2006 et évalués sur le plan clinique et radiologique par IKDC, par l’échelle de Lysholm et de Tegner ainsi qu’avec une évaluation avec le KT-1000. Après un suivi moyen de 85,8 mois, tous les patients présentent un excellent résultat sur le plan clinique. Objectivement, le test de Lachman reste négatif pour 7 patients et positif pour 3 patients. 6 patients (60%) ont un pivot shift léger (+) et moyen (++). Le tiroir antérieur évalué par le KT-1000 était en moyenne de 3 mm. Toutes les évaluations par les échelles cliniques sont satisfaisantes de même sur le plan radiologique avec une bonne consolidation de la fracture. En conclusion, la fracture des épines tibiales peut laisser une petite laxité antérieure et rotatoire, cependant, malgré ces constatations, les résultats cliniques restent tout à fait satisfaisants et n’entraînent aucune restriction pour les activités sportives de même sur le plan fonctionnel.

References

  1. 1.
    Accousti WK, Willis RB (2003) Tibial eminence fractures. Orthop Clin North Am 34:365–375PubMedCrossRefGoogle Scholar
  2. 2.
    Baxter MP, Wiley JJ (1988) Fractures of the tibial spine in children. An evaluation of knee stability. J Bone Joint Surg Br 70:228–230PubMedGoogle Scholar
  3. 3.
    Canale ST (1998) Fractures and dislocation in children. Campbell’s operative orthopaedics, 9th edn. Mosby, Philadelphia, pp 2488–2490Google Scholar
  4. 4.
    Grönkvist H, Hirsch G, Johansson L (1984) Fracture of the anterior tibial spine in children. J Pediatr Orthop 4:465–468PubMedGoogle Scholar
  5. 5.
    Hunter RE, Willis JA (2004) Arthroscopic fixation of avulsion fractures of the tibial eminence: technique and outcome. Arthroscopy 20:113–121PubMedGoogle Scholar
  6. 6.
    Janarv PM, Westblad P, Johansson C, Hirsch G (1995) Long-term follow-up of anterior tibial spine fractures in children. J Pediatr Orthop 15:63–68PubMedGoogle Scholar
  7. 7.
    Janarv PM, Hirsch G (2001) Growth influences knee laxity after anterior tibial spine fracture: a study on rabbits. Acta Orthop Scand 72:173–180PubMedCrossRefGoogle Scholar
  8. 8.
    Kocher MS, Micheli LJ, Gerbino P et al (2003) Tibial eminence fractures in children: prevalence of meniscal entrapment. Am J Sports Med 31:404–407PubMedGoogle Scholar
  9. 9.
    Kocher MS, Foreman ES, Micheli LJ (2003) Laxity and functional outcome after arthroscopic reduction and internal fixation of displaced tibial spine fractures in children. Arthroscopy 19:1085–1090PubMedCrossRefGoogle Scholar
  10. 10.
    Lubowitz JH, Grauer JD (1993) Arthroscopic treatment of anterior cruciate ligament avulsion. Clin Orthop Relat Res 294:242–246PubMedGoogle Scholar
  11. 11.
    Lubowitz JH, Elson WS, Guttmann D (2005) Part II: arthroscopic treatment of tibial plateau fractures: intercondylar eminence fractures. Arthroscopy 21:86–92PubMedGoogle Scholar
  12. 12.
    Mah JY, Adili A, Otsuka NY, Ogilvie R (1998) Follow-up study of arthroscopic reduction and fixation of type III tibial-eminence fractures. J Pediatr Orthop 18:475–477PubMedCrossRefGoogle Scholar
  13. 13.
    McLennan JG (1995) Lessons learned after second-look arthroscopy in type III fractures of the tibial spine. J Pediatr Orthop 15:59–62PubMedGoogle Scholar
  14. 14.
    Meyers MH, McKeever FM (1959) Fracture of the intercondylar eminence of the tibia. J Bone Joint Surg Am 41-A:209–222PubMedGoogle Scholar
  15. 15.
    Meyers MH, McKeever FM (1970) Fracture of the intercondylar eminence of the tibia. J Bone Joint Surg Am 52:1677–1684PubMedGoogle Scholar
  16. 16.
    Micheli LJ, Kocher MS (2006) The pediatric and adolescent knee, Chap. 26. Saunders, Philadelphia, pp 400–420Google Scholar
  17. 17.
    Mulhall KJ, Dowdall J, Grannell M, McCabe JP (1999) Tibial spine fractures: an analysis of outcome in surgically treated type III injuries. Injury 30:289–292PubMedCrossRefGoogle Scholar
  18. 18.
    Noyes FR, DeLucas JL, Torvik PJ (1974) Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am 56:236–253PubMedGoogle Scholar
  19. 19.
    Oostvogel HJ, Klasen HJ, Reddingius RE (1988) Fractures of the intercondylar eminence in children and adolescents. Arch Orthop Trauma Surg 107:242–247PubMedCrossRefGoogle Scholar
  20. 20.
    Owens BD, Crane GK, Plante T, Busconi BD (2003) Treatment of type III tibial intercondylar eminence fractures in skeletally immature athletes. Am J Orthop 32:103–105PubMedGoogle Scholar
  21. 21.
    Roberts JM, Lovell WW (1970) Fractures of the intercondylar eminence of the tibia. J Bone Joint Surg Am 52:827Google Scholar
  22. 22.
    Smith JB (1984) Knee instability after fractures of the intercondylar eminence of the tibia. J Pediatr Orthop 4:462–464PubMedGoogle Scholar
  23. 23.
    Wiley JJ, Baxter MP (1990) Tibial spine fractures in children. Clin Orthop Relat Res 255:54–60PubMedGoogle Scholar
  24. 24.
    Willis RB, Blokker C, Stoll TM et al (1993) Long-term follow-up of anterior tibial eminence fractures. J Pediatr Orthop 13:361–364PubMedGoogle Scholar
  25. 25.
    Zaricznyj B (1977) Avulsion fracture of the tibial eminence: treatment by open reduction and pinning. J Bone Joint Surg Am 59:1111–1114PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • D. Perugia
    • 1
    • 2
    Email author
  • L. Basiglini
    • 1
  • A. Vadalà
    • 1
  • A. Ferretti
    • 1
  1. 1.Orthopaedic Unit and “Kirk Kilgour” Sports Injury Centre, S. Andrea HospitalUniversity of Rome “Sapienza”RomeItaly
  2. 2.Rome (RM)Italy

Personalised recommendations