International Orthopaedics

, Volume 33, Issue 2, pp 397–402 | Cite as

Influence of the acetabular cup position on hip load during arthroplasty in hip dysplasia

  • Goran BicanicEmail author
  • Domagoj Delimar
  • Marko Delimar
  • Marko Pecina
Original Paper


Placement of the acetabular cup during total hip arthroplasty is of great importance because usually every deviation from the ideal centre of rotation negatively influences endoprosthesis survival, polyethylene wear and hip load. Here we present hip load change in respect to various acetabular cup positions in female patients who underwent total hip replacement surgery due to hip dysplasia. The calculation suggests that, in the majority of cases, for every millimeter of lateral displacement of the acetabular cup (relative to the ideal centre of rotation) an increase of 0.7% in hip load should be expected and for every millimeter of proximal displacement an increase of 0.1% in hip load should be expected (or decreased if displacement is medial or distal). Also, for every millimeter of neck length increase, 1% decrease is expected and for every millimeter of lateral offset, 0.8% decrease is expected. Altogether, hip load decreases when the cup is placed more medially or distally and when the femoral neck is longer or lateral offset is used.


Wear Rate Abductor Muscle Postoperative Position Pelvic Height Proximal Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Le positionnement de la cupule acétabulaire durant la réalisation d’une prothèse totale de hanche est très important car une déviation de la position idéale du centre de rotation peut influer de façon négative sur la survie, sur l’usure et sur les vecteurs de forces au niveau de la hanche. Nous présentons une étude qui permet de visualiser les vecteurs de forces en fonction des différentes positions de la cupule chez des patients de sexe féminin qui ont bénéficié d’une prothèse totale de hanche mise en place pour dysplasie. Les calculs permettent de penser que dans la majorité des cas chaque millimètre de latéralisation de la cupule augmente de 0,7% la charge au niveau de la hanche et que chaque déplacement proximal l’augmente de 0,1%. Ainsi chaque augmentation millimétrique de la longueur du col peut entraîner une diminution de 1% des forces, de même en ce qui concerne chaque millimètre d’offset latéral qui permet d’obtenir une diminution de 0,8%. En conclusion, les charges diminuent au niveau de la hanche quand la cupule est placée de façon plus médiane ou distale et quand les longueurs du col fémoral ou de l’offset son utilisées.


  1. 1.
    Brinckmann P, Frobin W, Hierholzer E (1981) Stress on the articular surface of the hip joint in healthy adults and persons with idiopathic osteoarthrosis of the hip joint. J Biomech 14:149–156PubMedCrossRefGoogle Scholar
  2. 2.
    Crowe JF, Mani VJ, Ranawat CS (1979) Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am 61:15–23PubMedGoogle Scholar
  3. 3.
    Dearborn JT, Harris WH (1999) High placement of an acetabular component inserted without cement in a revision total hip arthroplasty. Results after a mean of ten years. J Bone Joint Surg Am 81:469–480PubMedGoogle Scholar
  4. 4.
    Delimar D, Bicanic G, Korzinek K (2008) Femoral shortening during hip arthroplasty through a modified lateral approach. Clin Orthop Relat Res 466:1954–1958PubMedCrossRefGoogle Scholar
  5. 5.
    Delimar D, Bicanic G, Pecina M, Korzinek K (2004) Acetabular roof reconstruction with pedicled iliac graft: early clinical experience. Int Orthop 28:319–320PubMedCrossRefGoogle Scholar
  6. 6.
    Delimar D, Cicak N, Klobucar H, Pecina M, Korzinek K (2002) Acetabular roof reconstruction with pedicled iliac graft. Int Orthop 26:344–348PubMedCrossRefGoogle Scholar
  7. 7.
    Della Valle AG, Padgett DE, Salvati EA (2005) Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 13:455–462PubMedGoogle Scholar
  8. 8.
    Doehring TC, Rubash HE, Shelley FJ, Schwendeman LJ, Donaldson TK, Navalgund YA (1996) Effect of superior and superolateral relocations of the hip center on hip joint forces. An experimental and analytical analysis. J Arthroplasty 11:693–703PubMedCrossRefGoogle Scholar
  9. 9.
    Erceg M (2008) The influence of femoral head shift on hip biomechanics: additional parameters accounted. Int Orthop. doi: 10.1007/s00264-008-0544-9
  10. 10.
    Hartofilakidis G, Stamos K, Karachalios T (1998) Treatment of high dislocation of the hip in adults with total hip arthroplasty. Operative technique and long-term clinical results. J Bone Joint Surg Am 80:510–517PubMedGoogle Scholar
  11. 11.
    Heller MO, Schröder JH, Matziolis G, Sharenkov A, Taylor WR, Perka C, Duda GN (2007) Musculoskeletal load analysis. A biomechanical explanation for clinical results–and more? (in German). Orthopade 36:188, 190–194Google Scholar
  12. 12.
    Jerosch J, Steinbeck J, Stechmann J, Guth V (1997) Influence of a high hip center on abductor muscle function. Arch Orthop Trauma Surg 116:385–389PubMedCrossRefGoogle Scholar
  13. 13.
    Johnston RC, Brand RA, Crowninshield RD (1979) Reconstruction of the hip. A mathematical approach to determine optimum geometric relationships. J Bone Joint Surg Am 61:639–652PubMedGoogle Scholar
  14. 14.
    Lengsfeld M, Bassaly A, Boudriot U, Pressel T, Griss P (2000) Size and direction of hip joint forces associated with various positions of the acetabulum. J Arthroplasty 15:314–320PubMedCrossRefGoogle Scholar
  15. 15.
    Müller ME (1992) Lessons of 30 years of total hip arthroplasty. Clin Orthop Relat Res 274:12–21PubMedGoogle Scholar
  16. 16.
    Noble PC, Sugano N, Johnston JD, Thompson MT, Conditt MA, Engh CA Sr, Mathis KB (2003) Computer simulation: how can it help the surgeon optimize implant position? Clin Orthop Relat Res 417:242–252PubMedGoogle Scholar
  17. 17.
    Papachristou G, Hatzigrigoris P, Panousis K, Plessas S, Sourlas J, Levidiotis C, Chronopoulos E (2006) Total hip arthroplasty for developmental hip dysplasia. Int Orthop 30:21–25PubMedCrossRefGoogle Scholar
  18. 18.
    Ranawat CS, Dorr LD, Inglis AE (1980) Total hip arthroplasty in protrusio acetabuli of rheumatoid arthritis. J Bone Joint Surg Am 62:1059–1065PubMedGoogle Scholar
  19. 19.
    Rosler J, Perka C (2000) The effect of anatomical positional relationships on kinetic parameters after total hip replacement. Int Orthop 24:23–27PubMedCrossRefGoogle Scholar
  20. 20.
    Sanchez-Sotelo J, Berry DJ, Trousdale RT, Cabanela ME (2002) Surgical treatment of developmental dysplasia of the hip in adults: II. Arthroplasty options. J Am Acad Orthop Surg 10:334–344PubMedGoogle Scholar
  21. 21.
    Schmalzried TP, Guttmann D, Grecula M, Amstutz HC (1994) The relationship between the design, position, and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis. J Bone Joint Surg Am 76:677–688PubMedGoogle Scholar
  22. 22.
    Schmalzried TP, Shepherd EF, Dorey FJ, Jackson WO, dela Rosa M, Fa’vae F, McKellop HA, McClung CD, Martell J, Moreland JR, Amstutz HC (2000) The John Charnley Award. Wear is a function of use, not time. Clin Orthop Relat Res 381:36–46PubMedCrossRefGoogle Scholar
  23. 23.
    The B, Hosman A, Kootstra J, Kralj-Iglic V, Flivik G, Verdonschot N, Diercks R (2008) Association between contact hip stress and RSA-measured wear rates in total hip arthroplasties of 31 patients. J Biomech 41:100–105PubMedCrossRefGoogle Scholar
  24. 24.
    Wan Z, Boutary M, Dorr LD (2008) The influence of acetabular component position on wear in total hip arthroplasty. J Arthroplasty 23:51–56PubMedCrossRefGoogle Scholar
  25. 25.
    Zupanc O, Antolic V, Iglic A, Jaklic A, Kralj-Iglic V, Stare J, Vengust R (2001) The assessment of contact stress in the hip joint after operative treatment for severe slipped capital femoral epiphysis. Int Orthop 25:9–12PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Goran Bicanic
    • 1
    Email author
  • Domagoj Delimar
    • 1
  • Marko Delimar
    • 2
  • Marko Pecina
    • 3
  1. 1.Department of Orthopaedic Surgery, School of MedicineUniversity of Zagreb, Clinical Hospital Center ZagrebZagrebCroatia
  2. 2.Department of Power Systems, Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  3. 3.School of Medicine, University of ZagrebZagrebCroatia

Personalised recommendations