International Orthopaedics

, Volume 33, Issue 3, pp 687–693 | Cite as

Optimisation of the posterior stabilised tibial post for greater femoral rollback after total knee arthroplasty—a finite element analysis

  • Nagarajan Chandran
  • Farid Amirouche
  • Mark H. Gonzalez
  • Kevin M. Hilton
  • Riad Barmada
  • Wayne Goldstein
Original Paper


Femoral rollback after total knee arthroplasty (TKA) is necessary for flexion beyond 90–100°. Femoral rollback in posterior cruciate substituting TKA occurs as a result of the interaction between the femoral cam and tibial post. The geometric design of the cam post mechanism determines the kinematics of rollback. The purpose of this study is to optimise the design of the femoral cam-tibial post articulation through finite element analysis and suggest various design parameters that would optimise femoral rollback. Modifications to the tibial post geometry without changing the relative post position or slope are made. Results are characterised in terms femoral rollback and pressure distribution at the tibial post. Small design modifications to the tibial post are seen to produce large changes in femoral rollback with relatively small accompanying increases in contact pressures at the tibial post.


Total Knee Arthroplasty Contact Pressure Femoral Component Posterior Cruciate Ligament UHMWPE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Le rollback fémoral après prothèse totale du genou est nécessaire lorsque la flexion va au delà de 90 à 100°. Le rollback fémoral dans les prothèses postéro-stabilisées est le résultat de l’interaction entre la came fémorale et le plot tibial postérieur. La géométrie de la came détermine la cinématique de ce rollback. Le but de cette étude est d’optimiser le dessin de la came fémorale et de son articulation avec la butée tibiale postérieure. Il s’agit d’une étude par éléments finis. Des modifications du dessin de la butée tibiale postérieure, sans changer sa position ou sa pente ont été réalisés. Les résultats ont été définis en terme de rollback et de pression au niveau de la butée postérieure. De petites modifications du dessin de cette butée postérieure peuvent entraîner d’importantes modifications du rollback sans augmenter les pressions au niveau de la butée postérieure.


  1. 1.
    Bellemans J, Banks S, Victor J, Vandenneucker H, Moermans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in a total knee arthroplasty: influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53PubMedCrossRefGoogle Scholar
  2. 2.
    Delp SL, Kocmond JH, Stern SH (1995) Tradeoffs between motion and stability in posterior substituting knee arthroplasty design. J Biomech 28:1155–1166PubMedCrossRefGoogle Scholar
  3. 3.
    Hefzy MS, Kelly BP, Cooke TD (1998) Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys 20:302–307PubMedCrossRefGoogle Scholar
  4. 4.
    Insall JN, Lachiewicz PF, Burstein AH (1982) The posterior stabilized condylar prosthesis: a modification of the total condylar design. J Bone Joint Surg Am 64:1317–1323PubMedGoogle Scholar
  5. 5.
    Kocmond JH, Delp SL, Stern SH (1995) Stability and range of motion of the Insall-Burstein condylar prosthesis. A computer simulation study. J Arthroplasty 10:383–388PubMedCrossRefGoogle Scholar
  6. 6.
    Mulholland SJ, Wyss UP (2001) Activities of daily living in non-Western cultures: range of motion requirements for hip and knee joint implants. Int J Rehabil Res 24:191–198PubMedCrossRefGoogle Scholar
  7. 7.
    Nakagawa S, Johal P, Pinskerova V, Komatsu T, Sosna A, Williams A, Freeman MA (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456PubMedCrossRefGoogle Scholar
  8. 8.
    Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, Yamano Y (2000) Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br 82:1199–1200PubMedCrossRefGoogle Scholar
  9. 9.
    Pinskerova V, Johal P, Nakagawa S, Sosna A, Williams A, Gedroyc W, Freeman MA (2004) Does the femur roll-back with flexion? J Bone Joint Surg Br 86:925–931PubMedCrossRefGoogle Scholar
  10. 10.
    Row PJ, Myles CM, Walker C, Nutton R (2000) Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture 12:143–155CrossRefGoogle Scholar
  11. 11.
    Victor J, Bellemans J (2006) Physiologic kinematics as a concept for better flexion in TKA. Clin Orthop Relat Res 452:53–58PubMedCrossRefGoogle Scholar
  12. 12.
    Yamazaki J, Ishigami S, Nagashima M, Yoshino S (2002) Hy-Flex II total knee system and range of motion. Arch Orthop Trauma Surg 122:156–160PubMedCrossRefGoogle Scholar
  13. 13.
    Amirouche F (2003) Principles of computer-aided design. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nagarajan Chandran
    • 1
  • Farid Amirouche
    • 1
    • 2
  • Mark H. Gonzalez
    • 1
    • 2
    • 3
  • Kevin M. Hilton
    • 2
  • Riad Barmada
    • 2
  • Wayne Goldstein
    • 2
  1. 1.Biomechanics Research LaboratoryUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Orthopaedics, College of MedicineUniversity of Illinois-ChicagoChicagoUSA
  3. 3.Department of Orthopaedic SurgeryChicagoUSA

Personalised recommendations