Extracorporeal shock wave treatment in nonunions of long bone fractures

  • Zhi-Hong Xu
  • Qing JiangEmail author
  • Dong-Yang Chen
  • Jin Xiong
  • Dong-Quan Shi
  • Tao Yuan
  • Xiao-Lin Zhu
Original Paper


We reviewed the clinical results of the past 7 years in order to investigate the effect of extracorporeal shock wave therapy (ESWT) in nonunions of long bone fracture. Sixty-nine patients with 69 nonunions (22 femora, 28 tibiae, 13 humeri, 5 radii, and 1 ulna) were treated with extracorporeal shock waves. The technical parameters were 6,000 to 10,000 impulses at 28 kV (0.62 mJ/mm2 energy flux density) for the femur and tibia, 4,000 impulses at 24 kV for the humerus (0.56 mJ/mm2 energy flux density), and 3,000 impulses at 24 kV (0.56 mJ/mm2 energy flux density) for the radius and ulna. Sixty-six patients were followed up. The total successful rate of bony union was 75.4%. ESWT was successful in hypertrophic nonunions and seemed to have no evident effect in atrophic nonunions. We believe that extracorporeal shock wave therapy may be a good choice for nonunions of long bone fracture especially in hypertrophic nonunions.


Shock Wave Bone Fracture Intramedullary Nail Extracorporeal Shock Wave Therapy Bony Union 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


L’objectif de cette étude a été d’évaluer cliniquement les résultats observés sur les 7 dernières années lde a technique extracorporelle “schock wave” (ESWT) sur le traitement des pseudarthroses des os longs. Matériel et méthode : 69 patients présentant 69 pseudarthroses (22 fémurs, 28 tibias, 13 humérus, 5 radius et 1 cubitus) ont été traités selon cette méthode. Les paramètres techniques étaient de 6000 et de 10000 impulsions à 28 kV (062 mJ/mm2) pour le fémur et le tibia, 4000 impulsions à 24 kV pour l’humérus (0.56 mJ/mm2), 3000 impulsions à 24 kV (0.56 mJ/mm2) pour le radius et le cubitus. Résultats : 66 patients ont été suivis pendant au moins 12 mois. Le taux de consolidation a été de 75,4%. La ESWT est une technique qui permet de traiter une pseudarthrose hypertrophique alors qu’elle a peu d’effet sur les pseudarthroses atrophique. Conclusion : nous pensons que cette technique est une technique de choix pour les pseudarthroses des os longs spécialement lorsque ces pseudarthroses sont hypertrophiques.


  1. 1.
    Bara T, Synder M (2007) Nine-years experience with the use of shock waves for treatment of bone union disturbances. Ortop Traumatol Rehabil 9(3):254–258PubMedGoogle Scholar
  2. 2.
    Bulut O, Eroglu M, Ozturk H, Tezeren G, Bulut S, Koptagel EJ (2006) Extracorporeal shock wave treatment for defective nonunion of the radius: a rabbit model. Orthop Surg (Hong Kong) 14(2):133–137Google Scholar
  3. 3.
    Chen YJ, Kuo YR, Yang KD, Wang CJ, Sheen Chen SM, Huang HC, Yang YJ, Yi-Chih S, Wang FS (2004) Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats. Bone 34(3):466–477PubMedCrossRefGoogle Scholar
  4. 4.
    Delius M, Draenert K, Al Diek Y, Draenert Y (1995) Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound Med Biol 21(9):1219–1225PubMedCrossRefGoogle Scholar
  5. 5.
    Einhorn TA (1995) Enhancement of fracture healing. J Bone Joint Surg Am 77:940–946PubMedGoogle Scholar
  6. 6.
    Heckman JD, Ingram AJ, Loyd RD, Luck JV Jr, Mayer PW (1981) Nonunion treatment with pulsed electromagnetic fields. Clin Orthop Relat Res 161:58–66PubMedGoogle Scholar
  7. 7.
    Johannes EJ, Kaulesar SD, Mature Ature E (1994) High energy shock waves for treatment of nonunions: an experiment on dogs. J Surg Res 57:246–252PubMedCrossRefGoogle Scholar
  8. 8.
    Ludwig J, Lauber S, Lauber HJ, Dreisilker U, Raedel R, Hotzinger H (2001) High-energy shock wave treatment of femoral head necrosis in adults. Clin Orthop Relat Res 387:119–126PubMedCrossRefGoogle Scholar
  9. 9.
    Malay DS, Pressman MM, Assili A, Kline JT, York S, Buren B, Heyman ER, Borowsky P, LeMay C (2006) Extracorporeal shockwave therapy versus placebo for the treatment of chronic proximal plantar fasciitis: results of a randomized, placebo-controlled, double-blinded, multicenter intervention trial. J Foot Ankle Surg 45(4):196–210PubMedCrossRefGoogle Scholar
  10. 10.
    Martini L, Giavaresi G, Fini M, Borsari V, Torricelli P, Giardino R (2006) Early effects of extracorporeal shock wave treatment on osteoblast-like cells: a comparative study between electromagnetic and electrohydraulic devices. J Trauma 61(5):1198–1206PubMedCrossRefGoogle Scholar
  11. 11.
    McKee M (2000) Aseptic non-union. In: Rüedi TP, Murphy WM (eds) AO–principles of fracture management. Georg Thieme, Stuttgart, pp 748–762Google Scholar
  12. 12.
    Rompe JD, Rosendahl T, Schöllner C, Theis C (2001) High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res 387:102–111PubMedCrossRefGoogle Scholar
  13. 13.
    Schaden W, Fischer A, Sailler A (2001) Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 387:90–94PubMedCrossRefGoogle Scholar
  14. 14.
    Scheberger R, Senge T (1992) Non-invasive treatment of long bone pseudarthrosis by shock waves. Arch Orthop Trauma Surg 111:224–227CrossRefGoogle Scholar
  15. 15.
    Valchanou VD, Michailov P (1991) High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 15:181–184PubMedCrossRefGoogle Scholar
  16. 16.
    Vulpiani MC, Vetrano M, Savoia V, Di Pangrazio E, Trischitta D, Ferretti A (2007) Jumper’s knee treatment with extracorporeal shock wave therapy: a long-term follow-up observational study. J Sports Med Phys Fitness 47(3):323–328PubMedGoogle Scholar
  17. 17.
    Wang CJ, Chen HS, Chen CE, Yang KD (2001) Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 387:95–101PubMedCrossRefGoogle Scholar
  18. 18.
    Wang CJ, Wang FS, Huang CC, Yang KD, Weng LH, Huang HY (2005) Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am 87(11):2380–2387PubMedCrossRefGoogle Scholar
  19. 19.
    Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, Huang HC, Yang YJ, Yang KD (2003) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 279(11):10331–10337PubMedCrossRefGoogle Scholar
  20. 20.
    Wang FS, Wang CJ, Sheen-Chen SM, Kuo YR, Chen RF, Yang KD (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem 277(13):10931–10937PubMedCrossRefGoogle Scholar
  21. 21.
    Wang FS, Yang KD, Kuo YR, Wang CJ, Sheen-Chen SM, Huang HC, Chen YJ (2003) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32(4):387–396PubMedCrossRefGoogle Scholar
  22. 22.
    Zichner L (1981) Repair of nonunions by electrically pulsed current stimulation. Clin Orthop Relat Res 161:115–121PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Zhi-Hong Xu
    • 1
  • Qing Jiang
    • 1
    • 3
    Email author
  • Dong-Yang Chen
    • 1
  • Jin Xiong
    • 1
  • Dong-Quan Shi
    • 1
  • Tao Yuan
    • 1
  • Xiao-Lin Zhu
    • 2
  1. 1.Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople’s Republic of China
  2. 2.Department of Cell Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.The Center for Diagnosis and Treatment of Joint DiseaseNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople’s Republic of China

Personalised recommendations