International Orthopaedics

, Volume 33, Issue 1, pp 77–82 | Cite as

Biochemical markers of bone turnover in aseptic loosening in hip arthroplasty

  • Nikolaus A. Streich
  • Tobias Gotterbarm
  • Martin Jung
  • Ulrich Schneider
  • Christian Heisel
Original Paper


The aim of this study was to determine the diagnostic value of systemic biochemical markers of bone turnover in aseptic loosening in hip arthroplasty, namely the urine levels of three bone resorption peptides – crosslinked n-telopeptides (NTX), c-telopeptides (CTX I) and deoxypyridinoline (DPD). We compared 52 patients with surgically proven component loosening with 52 patients without clinical or radiological signs of endoprosthetic loosening and 52 healthy individuals. All three markers were measured using commercially available enzyme-linked immunoassays. We found significantly increased levels of DPD in the loosening group (p < 0.05), but there was no significant difference between the loosening group and the two reference groups for the other two markers tested. Our data suggest that DPD can be used as an additional tool in the diagnosis of aseptic loosening in hip arthroplasty but CTX I and NTX have no predictive value in this context.


Le but de cette étude est de déterminer la valeur diagnostic de marqueurs bio-chimiques dans le descellement aseptique des prothèses totales de hanche, en mesurant un certain nombre peptides issus de la résorption osseuse (crosslinked n-telpeptides [NTX], c-telpepetides [CTX I] et deoxypyridinoline [DPD]. nous avons comparé les paramètres de 52 individus présentant un descellement aseptique à 52 individus sains. Tous les paramètres ont été mesurés par la méthode ELISA. nous avons trouvé une augmentation significative des DPD dans le groupe prothèses descellées (p < 0.05). Il n’y a pas de différence significative entre les deux groupes pour les autres marqueurs. nous suggérons que la DPD peut être utilisée comme un marqueur additionnel du diagnostic des descellements aseptiques des prothèses totales de hanche par contre, il n’y a pas de valeurs prédictives pour les marqueurs CTX1 et NTX.



No financial benefits were received for this study by any of the authors. All assays used were provided by the research grant of the Department of Orthopaedic Surgery, University of Heidelberg, Heidelberg, Germany.


  1. 1.
    Antoniou J, Huk O, Zukor D et al (2000) Collagen crosslinked N-telopeptides as markers for evaluating particulate osteolysis: a preliminary study. J Orthop Res 18:64–67PubMedCrossRefGoogle Scholar
  2. 2.
    Bettica P, Cline G, Hart DJ et al (2002) Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 46:3178–3184PubMedCrossRefGoogle Scholar
  3. 3.
    Calvo MS, Eyre DR, Gundberg CM (1996) Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 17:333–368PubMedCrossRefGoogle Scholar
  4. 4.
    Carlsson AS, Gentz CF (1984) Radiographic versus clinical loosening of the acetabular component in noninfected total hip arthroplasty. Clin Orthop Relat Res 185:145–150PubMedGoogle Scholar
  5. 5.
    Claus AM, Engh CA Jr, Sychterz CJ et al (2003) Radiographic definition of pelvic osteolysis following total hip arthroplasty. J Bone Joint Surg 85A:1519–1526Google Scholar
  6. 6.
    Gilardetti RS, Chaibi MS, Stroumza J et al (1991) High-affinity binding of PDGF-AA and PDGF-BB to normal human osteoblastic cells and modulation by interleukin-1. Am J Physiol 261:980–985Google Scholar
  7. 7.
    Harris WH (1994) Osteolysis and particle disease in hip replacement. Acta Orthop Scand 65:113–123PubMedGoogle Scholar
  8. 8.
    Kelman A, Lui L, Yao W et al (2006) Association of higher levels of serum cartilage oligomeric matrix protein and N-telopeptide crosslinks with the development of radiographic hip osteoarthritis in elderly women. Arthritis Rheum 54:236–243PubMedCrossRefGoogle Scholar
  9. 9.
    Kim K, Chiba J, Rubash H (1994) In Vivo and in Vitro analysis of membranes from hip prostheses inserted without cement. J Bone Joint Surg 76A:172–180Google Scholar
  10. 10.
    Kneif D, Downing M, Ashcroft GP et al (2005) Peri-acetabular radiolucent lines: inter- and intra-observer agreement on post-operative radiographs. Int Orthop. 29:152–155PubMedCrossRefGoogle Scholar
  11. 11.
    Konttinen YT, Xu JW, Imai S et al (1997) Cytokines in aseptic loosening of total hip replacement. Curr Orthopaed 11:40–47CrossRefGoogle Scholar
  12. 12.
    Malchau H, Herberts P, Ahnfehlt L (1993) Prognosis of total hip replacement in Sweden. Acta Orthop Scand 64:497–506PubMedCrossRefGoogle Scholar
  13. 13.
    Meurer A, Lotz J, Giesa M et al (1998) Follow-up of collagen and bone metabolism in patients with cement-free total hip endoprosthesis. Z Orthop Ihre Grenzgeb 136:304–309PubMedCrossRefGoogle Scholar
  14. 14.
    Morscher E (2003) Criteria for evaluating hip joint arthroplasty. Schweiz Rundsch Med Prax 92:939–948Google Scholar
  15. 15.
    Paprosky WG, Burnett RS (2002) Assessment and classification of bone stock deficiency in revision total hip arthroplasty. Am J Orthop 31:459–464PubMedCrossRefGoogle Scholar
  16. 16.
    Pellengahr C, Mayer W, Durr HR et al (2001) The value of desoxypyridinoline in the diagnostics of loosened arthroplasty. Arch Orthop Trauma Surg 121:205–206PubMedCrossRefGoogle Scholar
  17. 17.
    Saleh KJ, Thongtrangan I, Schwarz EM (2004) Osteolysis: medical and surgical approaches. Clin Orthop Relat Res 427:138–147PubMedCrossRefGoogle Scholar
  18. 18.
    Savarino L, Granchi D, Cenni E et al (2005) Systemic cross-linked N-terminal telopeptide and procollagen I C-terminal extension peptide as markers of bone turnover after total hip arthroplasty. J Bone Joint Surg 87B:571–576Google Scholar
  19. 19.
    Schmalzried TP, Kwong LM, Jasty M et al (1992) The mechanism of loosening of cemented acetabular components in total hip arthroplasty. Analysis of specimens retrieved at autopsy. Clin Orthop 274:60–78PubMedGoogle Scholar
  20. 20.
    Schneider U, Breusch SJ, Termath S et al (1998) Increased urinary crosslink levels in aseptic loosening of total hip arthroplasty. J Arthroplasty 13:687–692PubMedCrossRefGoogle Scholar
  21. 21.
    Schneider U, Schmidt-Rohlfing B, Knopf U et al (2002) Effects upon bone metabolism following total hip and total knee arthroplasty. Pathobiology 70:26–33PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson PW, Spector TD, James IT et al (1992) Urinary collagen crosslinks reflect the radiographic severity of knee osteoarthritis. Br J Rheumatol 31:759–761PubMedCrossRefGoogle Scholar
  23. 23.
    von Schewelov T, Carlsson A, Dahlberg L (2006) Cross-linked N-telopeptide of type I collagen (NTX) in urine as a predictor of periprosthetic osteolysis. J Orthop Res 24:1342–1348CrossRefGoogle Scholar
  24. 24.
    Wilkinson JM, Hamer AJ, Rogers A et al (2003) Bone mineral density and biochemical markers of bone turnover in aseptic loosening after total hip arthroplasty. J Orthop Res 21:691–696PubMedCrossRefGoogle Scholar
  25. 25.
    Witzleb WC, Menschikowski M (2001) Urinary concentration of collagen metabolites in endoprosthesis loosening. Z Orthop Ihre Grenzgeb 139:240–244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Nikolaus A. Streich
    • 1
  • Tobias Gotterbarm
    • 1
  • Martin Jung
    • 1
  • Ulrich Schneider
    • 2
  • Christian Heisel
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity of HeidelbergHeidelbergGermany
  2. 2.Arthro Nova ClinicRottach-EggernGermany

Personalised recommendations