International Orthopaedics

, Volume 31, Issue 6, pp 735–741

Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion

  • Andrew P. White
  • Alexander R. Vaccaro
  • Jeremy A. Hall
  • Peter G. Whang
  • Brian C. Friel
  • Michael D. McKee
Review

Abstract

Since the identification of the osteogenic protein-1 (OP-1) gene, also called bone morphogenetic protein-7 (BMP-7), almost 20 years ago, OP-1 has become one of the most characteristic members of the BMP family. The biological activity of recombinant human OP-1 has been defined using a variety of animal models. These studies have demonstrated that local implantation of OP-1 in combination with a collagen matrix results in the repair of critical size defects in long bones and in craniofacial bones and the formation of bony fusion masses in spinal fusions. Clinical trials investigating long bone applications have provided supportive evidence for the use of OP-1 in the treatment of open tibial fractures, distal tibial fractures, tibial nonunions, scaphoid nonunions and atrophic long bone nonunions. Clinical studies investigating spinal fusion applications have provided supportive evidence for the use of OP-1 in posterolateral lumbar models and compromised patients as an adjunct or as a replacement for autograft. Both long bone repair and spinal fusion studies have demonstrated the efficacy and safety of OP-1 by clinical outcomes and radiographic measures. Future clinical investigations will be needed to better define variables, such as dose, scaffold and route of administration. Clearly the use of BMPs in orthopaedics is still in its formative stage, but the data suggest an exciting and promising future for the development of new therapeutic applications.

Résumé

Depuis l’identification du gène OP-1 appelé aussi BMP-7, il y a plus de 20 ans, OP-1 est la BMP la plus caractéristique de cette famille. L’activité biologique de l’OP-1 recombinante humaine a été bien définie et ce sur différents animaux servant de modèle expérimentaux. Ces études ont démontré que l’implantation locale d’OP-1 en association avec une matrice collagène entraîne la réparation de différents défects des os longs au niveau du crâne ainsi que la formation d’une bonne fusion osseuse au niveau de la colonne vertébrale. Les essais cliniques ont montré que l’OP-1 avait un résultat favorable dans le traitement des fractures ouvertes, les fractures du tibia distal, les pseudarthroses du scaphoïde et les pseudarthroses atrophiques des os longs. Différentes études cliniques portant sur la fusion rachidienne ont également été développées utilisant l’OP-1 sur des modèles d’abord lombaires postéro latéraux nous permettant de penser que l’on peut peut-être remplacer l’auto-greffe. Les réparations tant au niveau de l’os que l’utilisation au niveau du rachis ont démontré l’efficacité et surtout l’absence d’effets secondaires de l’OP-1. De nouvelles études cliniques doivent être développées de façon à déterminer quelles sont les doses optimales à délivrer et quel est le meilleur moyen d’administration. Ceci promet de futures études et un avenir florissant pour le développement de nouvelles applications thérapeutiques.

References

  1. 1.
    Bilic R, Simic P, Jelic M et al (2006) Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int Orthop 30:128–134PubMedCrossRefGoogle Scholar
  2. 2.
    Boden SD, Schimandle JH (1996) Biology of lumbar spine fusion and bone graft materials. In: International Society for Study of the Lumbar Spine (ed) The lumbar spine (2nd edn). WB Saunders, Philadelphia, pp 1284–1306Google Scholar
  3. 3.
    Bong MR, Capla EL, Egol KA et al (2005) Osteogenic protein-1 (bone morphogenic protein-7) combined with various adjuncts in the treatment of humeral diaphyseal nonunions. Bull Hosp Jt Dis Orthop Inst 63:20–23Google Scholar
  4. 4.
    Friedlaender GE, Perry CR, Cole JD et al (2001) Osteogenic protein 1 (bone morphogenic protein-7) in the treatment of tibial non-unions. J Bone Jt Surg [Am] 83:S151–S158Google Scholar
  5. 5.
    Govender VG, Rampersaud YR, Rickards L, Fehlings MG (2002) Use of osteogenic protein-1 in spinal fusion: literature review and preliminary results in a prospective series of high-risk cases. Neurosurg Focus 13Google Scholar
  6. 6.
    Johnsson R, Stromqvist B, Aspenberg P (2002) Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine 27: 2654–2661PubMedCrossRefGoogle Scholar
  7. 7.
    Kanayama M, Hashimoto T, Shigenobu K, Yamana S, Bauer T, Togwa D (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute; emphasis of surgical exploration and histologic assessment. Spine 31:1067–1074PubMedCrossRefGoogle Scholar
  8. 8.
    McKee MD, Schemitsch EH, Waddell JP et al (2002) The effect of human recombinant bone morphogenic protein (RHBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective, randomized clinical trial. In: Proceedings of the 18th Annual Meeting of the Orthopaedic Trauma Association; Oct 11–13; Toronto Ontario, Canada, pp 157–158Google Scholar
  9. 9.
    McKee MD, Schemitsch EH, Waddell JP, Wild L (2004) The treatment of long bone nonunion with rhBMP: results of a prospective pilot study. American Academy of Orthopaedic Surgeons 71st Annual Meeting, San Francisco, CA, March 10–14. P242Google Scholar
  10. 10.
    Pecina M, Giltaj LR, Vukicevic S (2001) Orthopaedic applications of osteogenic protein-1 (BMP-7). Int Orthop 25:203–208PubMedCrossRefGoogle Scholar
  11. 11.
    Pecina M, Haspl M, Jelic M, Vukicevic S (2003) Repair of a resistant tibial non-union with a recombinant bone morphogenetic protein-7 (rh-BMP-7). Int Orthop 27:320–321PubMedCrossRefGoogle Scholar
  12. 12.
    Ristiniemi J, Flinkkila T, Hyvonen P et al (2007) RhBMP-7 accelerated the healing of distal tibial fractures treated by external fixation. J Bone Jt Surg [Br] 89-B:265–272CrossRefGoogle Scholar
  13. 13.
    Vaccaro AR, Chiba K, Heller JG et al (2002) Bone grafting alternatives in spinal surgery. Spine J 2:206–215PubMedCrossRefGoogle Scholar
  14. 14.
    Vaccaro AR, Patel T, Fischgrund J et al (2003) A pilot safety and efficacy study of OP-1 putty (rhBMP-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J. 12:495–500PubMedCrossRefGoogle Scholar
  15. 15.
    Vaccaro AR, Patel T, Fischgrund J et al (2004) A pilot study evaluating the safety and efficacy of OP-1 putty (rhBMP-7) as a replacement of iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 29:1885–1892PubMedCrossRefGoogle Scholar
  16. 16.
    Vaccaro AR, Patel T, Fischgrund J et al (2005) A 2-year follow-up pilot study evaluating the safety and efficacy of op-1 putty (rhbmp-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J 14:623–629PubMedCrossRefGoogle Scholar
  17. 17.
    VanHouwelingen A, McKee MD (2005) Treatment of osteopenic humeral shaft nonunion with compression plating, humeral cortical allograft struts and bone grafting. J Orthop Trauma 19:36–41CrossRefGoogle Scholar
  18. 18.
    Vukicevic S, Sampath TK (eds) (2004) Bone morphogenetic proteins: regeneration of bone and beyond. PIR Series, Birkauser Verlag AG, Basel Boston BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andrew P. White
    • 1
  • Alexander R. Vaccaro
    • 2
  • Jeremy A. Hall
    • 3
  • Peter G. Whang
    • 4
  • Brian C. Friel
    • 5
  • Michael D. McKee
    • 3
  1. 1.Carl J. Shapiro Department of Orthopaedics, Orthopaedic SurgeryHarvard Medical School, Beth Israel Deaconess Medical CenterBostonUSA
  2. 2.Department of Orthopaedic Surgery and Neurosurgery, Rothman Institute at Jefferson University HospitalThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Division of Orthopaedics, Department of SurgerySt. Michael’s Hospital and the University of TorontoTorontoCanada
  4. 4.Yale Department of Orthopaedics and RehabilitationNew HavenUSA
  5. 5.Rothman Institute at Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations