International Orthopaedics

, Volume 31, Issue 6, pp 743–751 | Cite as

Detection of bone and cartilage-related proteins in plasma of patients with a bone fracture using liquid chromatography–mass spectrometry

  • Lovorka Grgurevic
  • Boris Macek
  • Dragan Durdevic
  • Slobodan Vukicevic
Original Paper

Abstract

Following bone fracture, a large number of growth factors, cytokines, and their cognate receptors involved in the repair process are active at the fracture site. To determine whether they appear in patients’ blood as candidate biomarkers for following the outcome of healing, we analysed the plasma of 25 patients with an acute bone fracture following affinity plasma purification, SDS gel electrophoresis and liquid chromatography - tandem mass spectrometry (LC-MS/MS). Two hundred and thirteen nonredundant proteins were identified in the in-gel analysis of pooled plasma proteins. Gene ontology (GO) analysis indicated that a majority of detected proteins were of extracellular origin, whereas only a small number were of intracellular (cytosol and nucleus) origin. A significant proportion of detected proteins was involved in the cell growth and proliferation, transport and coagulation. Twelve proteins were potentially related to bone and cartilage metabolism, and several have not been previously identified in the plasma, including: TGF-β induced protein IG-H3, cartilage acidic protein 1, procollagen C proteinase enhancer protein and TGF-β receptor III.

Résumé

Après une fracture, un grand nombre de facteurs de croissance, cytokines et leurs récepteurs apparentés interviennent dans le processus de réparation des foyers de fracture. Nous avons analysé ces différents facteurs circulants chez 25 patients ayant présenté une fracture après purification du sang, électrophorèses, chromatographie et spectrographie de masse. 213 protéines ont été identifiées. L’analyse génétique de la majorité de ces protéines montre qu’elles sont d’origine extra cellulaires avec un très petit nombre de protéines intra cellulaires provenant notamment du noyau. Une proportion significative des protéines détectées intervient au niveau de la croissance, de la prolifération cellulaire et des phénomènes de coagulation. 12 protéines sont spécifiquement en rapport avec les métabolismes osseux et cartilagineux, plusieurs d’entre-elles n’avaient pas été préalablement identifiées au niveau du plasma comme la TGF-β, la protéine IG-H3, la CAP 1, le procollagène de type C, le TGF-β récepteur III.

References

  1. 1.
    Anderson NL, Anderson NG (2002) The human plasma proteome. Mol Cell Proteomics 1:845–867PubMedCrossRefGoogle Scholar
  2. 2.
    Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14:1805–1815PubMedCrossRefGoogle Scholar
  3. 3.
    Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, Kelly P, Moeller BJ, Marks JR, Blobe GC (2007) The type III TGF-β receptor suppresses breast cancer progression. J Clin Invest 117:206–217PubMedCrossRefGoogle Scholar
  4. 4.
    Grgurevic L, Macek B, Erjavec I, Oppermann H, Mann M, Vukicevic S (2007) Urine release of systemically administered bone morphogenetic protein hybrid molecule. J Nephrol 20:311–319PubMedCrossRefGoogle Scholar
  5. 5.
    He P, He HZ, Dai J, Wang Y, Sheng QH, Zhou LP, Zhang ZS, Sun YL, Liu F, Wang K, Zhang JS, Wang HX, Song ZM, Zhang HR, Zeng R, Zhao X (2005) The human plasma proteom: analysis of Chanise serum using shotgun strategy. Proteomics 5:3442–3453PubMedCrossRefGoogle Scholar
  6. 6.
    Henle P, Zimmermann G, Weiss S (2005) Matrix metalloproteinases and failed fracture healing. Bone 37:791–798PubMedCrossRefGoogle Scholar
  7. 7.
    Jones AR, Gleghorn JP, Hughes CE, Fitz LJ, Zollner R, Wainwright SD, Caterson B, Morris EA, Bonassar LJ, Flannery CR (2006) Binding and localization of recombinant lubricin to articular cartilage surfaces. J Orthop Res 25:283–292CrossRefGoogle Scholar
  8. 8.
    Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  9. 9.
    Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R. Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Moll Cell Proteomics 4:2010–2021CrossRefGoogle Scholar
  10. 10.
    Pecina M, Giltaj LR, Vukicevic S (2001) Orthopaedic applications of osteogenic protein-1 (BMP-7). Int Orthop 25:203–208PubMedCrossRefGoogle Scholar
  11. 11.
    Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD (2005) The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 115:622–631PubMedCrossRefGoogle Scholar
  12. 12.
    Schmidt TA, Schumacher BL, Klein TJ, Voegtline MS, Sah RL (2004) Synthesis of proteoglycan 4 by chondrocyte subpopulation in cartilage explants, monolayer cultures and resurfaced cartilage cultures. Arthritis Rheum 50:2849–2857PubMedCrossRefGoogle Scholar
  13. 13.
    Schumacher BL, Schmidt TA, Voegtline MS, Chen AC, Sah RL (2005) Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus. J Orthop Res 23:562–568PubMedCrossRefGoogle Scholar
  14. 14.
    Simic P, Vukicevic S (2007) Bone morphogenetic proteins: from developmental signals to tissue regeneration. Conference on bone morphogenetic proteins. EMBO Rep 8:327–331PubMedCrossRefGoogle Scholar
  15. 15.
    Steck E, Braun J, Pelttari K, Kadel S, Kalbacher H, Richter W (2007) Chondrocyte secreted CRTAC1: a glycosylated extracellular matrix molecule of human articular cartilage. Matrix Biol 26:30–41PubMedCrossRefGoogle Scholar
  16. 16.
    Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC (2007) The type III transforming growth factor-β receptor as a novel tumor suppressor gene in prostate cancer. Cancer Res 67:1090–1098PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lovorka Grgurevic
    • 1
  • Boris Macek
    • 2
  • Dragan Durdevic
    • 3
  • Slobodan Vukicevic
    • 1
  1. 1.Laboratory of Mineralized Tissues, School of MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Department of Proteomics and Signal TransductionMax-Planck-Institute for BiochemistryMartinsriedGermany
  3. 3.Clinic of TraumatologyZagrebCroatia

Personalised recommendations