International Orthopaedics

, Volume 31, Issue 6, pp 791–797 | Cite as

Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches

Review

Abstract

Tendons and ligaments are elastic collagenous tissues with similar composition and hierarchical structure, contributing to motion. Their strength is related to the number and size of the collagen fibrils. Collagen fibrils increase in size during development and in response to increased physical demands or training. Tendon disorders are commonly seen in clinical practice and give rise to significant morbidity. Treatment is difficult and patients often suffer from the symptoms for quite a long time. Despite remodelling, the biochemical and mechanical properties of healed tendon tissue never match those of intact tendon. The prerequisite for focussed treatment strategies in the future will be an improved understanding of the molecular events both in the embryo and contributing to regeneration in the adult organism. Novel approaches include the local delivery of growth factors, stem- and tendon-cell-derived therapy, the application of mechanical load and gene-therapeutic approaches based on vehicles encoding selected factors, or combinations of these. Important factors are proteins of the extracellular matrix like the metalloproteinases, growth factors like the bone morphogenetic proteins but also intracellular signalling mediator proteins, such as the Smads and transcription factors from the helix–loop–helix and other families. In this review, we focus specifically on such molecular approaches based on mesenchymal stem cells.

Keywords

Anterior Cruciate Ligament Mesenchymal Stem Cell Patellar Tendon Tendon Sheath Mesenchymal Progenitor Cell 

Résumé

Les tendons et les ligaments sont constitués de fibres élastiques de collagène dont la composition est similaire de même que leur structure contribuant au mouvement. Leur résistance est parallèle au nombre et à la taille des fibres collagènes. Si les fibres collagènes grossissent durant la croissance, il en est de même en réponse à une augmentation de l’entraînement physique. A titre clinique on rencontre relativement fréquemment les problèmes tendineux responsables d’une certaine morbidité. Le traitement en est difficile, les patients sont affectés sur un temps relativement long de troubles secondaires à ces lésions. En dépit du remodelage, les propriétés biomécaniques et biochimiques d’un tendon, d’un tissu tendineux guéri ne peuvent être comparés à ceux d’un tendon sain. Les prérequis d’une stratégie thérapeutique devrait, dans le futur, permettre de mieux comprendre ce qui se passe au moment du développement embryologique et de la régénération au niveau de l’organisme adulte. Une nouvelle approche thérapeutique doit prendre en compte l’administration de facteurs de croissance et l’utilisation de cellules souche dans le cadre d’une thérapie génique. Les facteurs importants sont les protéines de la matrice extracellulaire comme les métalloprotéinases de même que les facteurs de croissance de type BMP mais il faut prendre en compte également les facteurs de transcriptions chromosomiques. Pour cette étude, nous nous sommes spécialement centrés sur de telles molécules et sur les cellules souches mesenchymenteuses.

Notes

Acknowledgements

The authors gratefully acknowledge the support from the EU integrated project GENOSTEM and by the SFB 599 collaborative research program of the German Research Foundation (DFG).

References

  1. 1.
    Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70:51–54PubMedCrossRefGoogle Scholar
  2. 2.
    Awad HA, Boivin GP, Dressler MR et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431PubMedCrossRefGoogle Scholar
  3. 3.
    Awad HA, Butler DL, Boivin GP et al (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5:267–277PubMedCrossRefGoogle Scholar
  4. 4.
    Awad HA, Butler DL, Harris MT et al (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res 51:233–240PubMedCrossRefGoogle Scholar
  5. 5.
    Batten ML, Hansen JC, Dahners LE (1996) Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J Orthop Res 14:736–741PubMedCrossRefGoogle Scholar
  6. 6.
    Benjamin M, Ralphs JR (1996) Tendons in health and disease. Man Ther 1:186–191PubMedCrossRefGoogle Scholar
  7. 7.
    Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528PubMedCrossRefGoogle Scholar
  8. 8.
    Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113:235–248PubMedCrossRefGoogle Scholar
  9. 9.
    Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211PubMedCrossRefGoogle Scholar
  10. 10.
    Chhabra A, Tsou D, Clark RT et al (2003) GDF-5 deficiency in mice delays Achilles tendon healing. J Orthop Res 21:826–835PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper JA Jr, Bailey LO, Carter JN et al (2006) Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 27:2747–2754PubMedCrossRefGoogle Scholar
  12. 12.
    Forslund C, Aspenberg P (2003) Improved healing of transected rabbit Achilles tendon after a single injection of cartilage-derived morphogenetic protein-2. Am J Sports Med 31:555–559PubMedGoogle Scholar
  13. 13.
    Forslund C, Rueger D, Aspenberg P (2003) A comparative dose–response study of cartilage-derived morphogenetic protein (CDMP)-1, -2 and -3 for tendon healing in rats. J Orthop Res 21:617–621PubMedCrossRefGoogle Scholar
  14. 14.
    Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9:967–979PubMedCrossRefGoogle Scholar
  15. 15.
    Gerich TG, Kang R, Fu FH et al (1997) Gene transfer to the patellar tendon. Knee Surg Sports Traumatol Arthrosc 5:118–123PubMedCrossRefGoogle Scholar
  16. 16.
    Goh JC, Ouyang HW, Teoh SH et al (2003) Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng 9(Suppl 1):S31–S44PubMedCrossRefGoogle Scholar
  17. 17.
    Hildebrand KA, Deie M, Allen CR et al (1999) Early expression of marker genes in the rabbit medial collateral and anterior cruciate ligaments: the use of different viral vectors and the effects of injury. J Orthop Res 17:37–42PubMedCrossRefGoogle Scholar
  18. 18.
    Hildebrand KA, Woo SL, Smith DW et al (1998) The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med 26:549–554PubMedGoogle Scholar
  19. 19.
    Hoffmann A, Gross G (2006) Tendon and ligament engineering: from cell biology to in vivo application. Regen Med 1:563–574PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffmann A, Pelled G, Turgeman G et al (2006) Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 116:940–952PubMedCrossRefGoogle Scholar
  21. 21.
    Holmbeck K, Bianco P, Caterina J et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92PubMedCrossRefGoogle Scholar
  22. 22.
    Jozsa LG, Kannus P (1997) Human tendons: anatomy, physiology, and pathology. Human Kinetics, Champaign, IllinoisGoogle Scholar
  23. 23.
    Juncosa-Melvin N, Boivin GP, Galloway MT et al (2005) Effects of cell-to-collagen ratio in mesenchymal stem cell-seeded implants on tendon repair biomechanics and histology. Tissue Eng 11:448–457PubMedCrossRefGoogle Scholar
  24. 24.
    Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698PubMedCrossRefGoogle Scholar
  25. 25.
    Kjaer M, Langberg H, Miller BF et al (2005) Metabolic activity and collagen turnover in human tendon in response to physical activity. J Musculoskelet Neuronal Interact 5:41–52PubMedGoogle Scholar
  26. 26.
    Lou J, Manske PR, Aoki M, Joyce ME (1996) Adenovirus-mediated gene transfer into tendon and tendon sheath. J Orthop Res 14:513–517PubMedCrossRefGoogle Scholar
  27. 27.
    Lou J, Tu Y, Burns M et al (2001) BMP-12 gene transfer augmentation of lacerated tendon repair. J Orthop Res 19:1199–1202PubMedCrossRefGoogle Scholar
  28. 28.
    Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New YorkGoogle Scholar
  29. 29.
    Mikic B, Schalet BJ, Clark RT et al (2001) GDF-5 deficiency in mice alters the ultrastructure, mechanical properties and composition of the Achilles tendon. J Orthop Res 19:365–371PubMedCrossRefGoogle Scholar
  30. 30.
    Minamitani T, Ikuta T, Saito Y et al (2004) Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp Cell Res 298:305–315PubMedCrossRefGoogle Scholar
  31. 31.
    Nakamura N, Hart DA, Boorman RS et al (2000) Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J Orthop Res 18:517–523PubMedCrossRefGoogle Scholar
  32. 32.
    Norris RA, Damon B, Mironov V et al (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711PubMedCrossRefGoogle Scholar
  33. 33.
    Oliver G, Wehr R, Jenkins NA et al (1995) Homeobox genes and connective tissue patterning. Development 121:693–705PubMedGoogle Scholar
  34. 34.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233PubMedCrossRefGoogle Scholar
  35. 35.
    Rees JD, Wilson AM, Wolman RL (2006) Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45:508–521CrossRefGoogle Scholar
  36. 36.
    Schmidt CC, Georgescu HI, Kwoh CK et al (1995) Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res 13:184–190PubMedCrossRefGoogle Scholar
  37. 37.
    Schweitzer R, Chyung JH, Murtaugh LC et al (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866PubMedGoogle Scholar
  38. 38.
    Settle SH Jr, Rountree RB, Sinha A et al (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254:116–130PubMedCrossRefGoogle Scholar
  39. 39.
    Sharma P, Maffulli N (2005) Basic biology of tendon injury and healing. Surgeon 3:309–316PubMedCrossRefGoogle Scholar
  40. 40.
    Sharma P, Maffulli N (2006) Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact 6:181–190PubMedGoogle Scholar
  41. 41.
    Storm EE, Huynh TV, Copeland NG et al (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGFb-superfamily. Nature 368:639–643PubMedCrossRefGoogle Scholar
  42. 42.
    Virchenko O, Fahlgren A, Skoglund B, Aspenberg P (2005) CDMP-2 injection improves early tendon healing in a rabbit model for surgical repair. Scand J Med Sci Sports 15:260–264PubMedCrossRefGoogle Scholar
  43. 43.
    Wang Z, Juttermann R, Soloway PD (2000) TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem 275:26411–26415PubMedCrossRefGoogle Scholar
  44. 44.
    Wolfman NM, Hattersley G, Cox K et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest 100:321–330PubMedCrossRefGoogle Scholar
  45. 45.
    Xu PX, Cheng J, Epstein JA, Maas RL (1997) Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function. Proc Natl Acad Sci USA 94:11974–11979PubMedCrossRefGoogle Scholar
  46. 46.
    Young RG, Butler DL, Weber W et al (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang G, Ezura Y, Chervoneva I et al (2006) Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem 98:1436–1449PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Molecular Biotechnology, Signalling and Gene RegulationHelmholtz Centre for Infection Research (HZI)BraunschweigGermany

Personalised recommendations