International Orthopaedics

, Volume 32, Issue 3, pp 307–313

Peroperative fractures in uncemented total hip arthrography: results with a single design of stem implant

  • Ricardo Fernandez-Fernandez
  • Elena García-Elias
  • Enrique Gil-Garay
Original Paper


The incidence of intraoperative femoral fractures with a single design of stem implant, the Meridian (Stryker-Howmedica, Rutherford, N.J.), has been assessed in a study of 117 implants in patients treated consecutively between 1996 and 2001. The aim of the study was to evaluate the risk factors for suffering an intraoperative fracture and to determine, based on a short-term follow-up, if there were radiographic signs of early loosening. The following variables were analysed: demographic factors of the patient, morphology of the femur, intraoperative factors and postoperative radiographic factors. The radiographic stability of the implant and the presence of early signs of loosening were evaluated 2 years after surgery. The incidence of femoral fractures was 11% (13 cases in 117 implants), which is higher that reported in earlier published studies, and there was an increased number of fractures when the proximal filling of the femoral canal was higher. Although there was no statistically significant relation between the variables studied and the appearance of an intraoperative fracture, we conclude that the appearance of a femoral intraoperative fracture did not affect the radiographic stability of the implant during the short-term follow-up of our study cohort.


L’incidence des fractures peropératoires a été évaluée chez des patients traités par l’implant Méridian (Stryker - Howmedica, Rutherford, NJ). Nous avons étudié une série consécutive de 117 implants réalisée entre 1996 et 2001. Nous avons également essayé de déterminer quels étaient les facteurs de risque de fractures peropératoires et essayé de visualiser les signes précoces de descellement sur un suivi relativement court. Les éléments suivants ont été pris en compte : facteur démographique du patient, morphologie du fémur, facteur peropératoire et radiographies post opératoires. La stabilité radiographique de l’implant et la présence de signes précoces de descellement ont été évalués deux ans après l’intervention. L’incidence des fractures peropératoires du fémur a été de 11% (13 cas sur 117), plus importantes que dans d’autres séries publiées. Le taux de fracture a été plus important lorsque les contacts entre la pièce fémorale et le canal fémoral ont été très élevés. Il n’y a pas de relation significative entre les facteurs étudiés et l’apparition, entre ces différents facteurs, d’une fracture peropératoire. Quoiqu’il en soit, l’existence d’une fracture peropératoire n’entraîne pas d’instabilité radiographique de l’implant au suivi à court terme.


  1. 1.
    Andrew TA, Flanagan JP, Gerundini M, Bombelli R (1986) The isoelastic, noncemented hip arthroplasty: Preliminary experience with 400 cases. Clin Orthop 206:127–138PubMedGoogle Scholar
  2. 2.
    Berend KR, Lombardi AV Jr, Mallory TH, Chonko DJ, Dodds KL, Adams JB (2004) Cerclage wires or cables for the management of intraoperative fracture associated with a cementless tapered femoral prosthesis: results at 2 to 16 years. J Arthroplasty 19:17–21Google Scholar
  3. 3.
    Cameron HU (2004) Intraoperative hip fractures: ruining your day. J Arthroplasty 19:99–104PubMedCrossRefGoogle Scholar
  4. 4.
    Capello WN, Sallay PI, Feinberg JR (1994) Omniflex modular femoral component: Two-to-five year results. Clin Orthop 298:54–59PubMedGoogle Scholar
  5. 5.
    Elias JJ, Nagao M, Chu YH, Lennox DW, Chao EY (2000) Medial cortex strain distribution during noncemented total hip arthroplasty. Clin Orthop 370:250–258PubMedCrossRefGoogle Scholar
  6. 6.
    Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231:7–28PubMedGoogle Scholar
  7. 7.
    Engh CA, Glassman AH, Griffin WL, Mayer JG (1988) Results of cementless revision for failed cemented total hip arthroplasty. Clin Orthop 235:91–110PubMedGoogle Scholar
  8. 8.
    Falez F, Santori N, Panegrossi G (1998) Intraoperative type I proximal femoral fractures. Influence on the stability of hydroxyl apatite-coated femoral components. J Arthroplasty 13:653–659PubMedCrossRefGoogle Scholar
  9. 9.
    Fitzgerald RH, Brindley GW, Kavanagh BF (1988) The uncemented total hip arthroplasty: Intraoperative femoral fractures. Clin Orthop 235:61–66PubMedGoogle Scholar
  10. 10.
    Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: Radiographic analysis of loosening. Clin Orthop 141:17–27PubMedGoogle Scholar
  11. 11.
    Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty: an end-result study using a new method of result evaluation. J Bone Joint Surg (Am) 51:737–755Google Scholar
  12. 12.
    Johansson JE, Mc Broom R, Barrington TW et al (1981) Fracture of the ipsilateral femur in patients with total hip replacement. J Bone Joint Surg (Am) 63A:1435–1442Google Scholar
  13. 13.
    Lord G, Marotte J-H, Guillamon J-L, Blanchard J-P (1988) Cementless revisions of failed cemented and cementless total hip arthroplasties: 284 cases. Clin Orthop 235:67–74PubMedGoogle Scholar
  14. 14.
    Mallory TH, Kraus TJ, Vaughn BK (1989) Intraoperative femoral fractures associated with cementless total hip arthroplasty. Orthopedics 12:231–239PubMedGoogle Scholar
  15. 15.
    Martell JM, Pierson RH, Jacobs JJ et al (1993) Primary total hip reconstruction with a titanium fiber-coated prosthesis inserted without cement. J Bone Joint Surg (Am) 75A:554–571Google Scholar
  16. 16.
    Meek RM, Garbuz DS, Masri BA, Greidanus NV, Duncan CP (2004) Intraoperative fracture of the femur in revision total hip arthroplasty with a diaphyseal fitting stem. J Bone Joint Surg (Am) 86-A:480–485Google Scholar
  17. 17.
    Mont MA, Maar DC, Krackow KA, Hungerford DS (1992) Hoop-stress fractures of the proximal femur during hip arthroplasty: Management and results in 19 cases. J Bone Joint Surg (Br) 74B:257–260Google Scholar
  18. 18.
    Moroni A, Faldini C, Piras F, Giannini S (2000) Risk factors for intraoperative femoral fractures during total hip replacement. Ann Chirurg Gynaecol 89:113–118Google Scholar
  19. 19.
    Paprosky WG, Greidanus NV, Antoniu J (1999) Minimum 10-year-results of extensively porous-coated stems in revision hip arthroplasty. Clin Orthop 369:119–130Google Scholar
  20. 20.
    Schwatrz JT Jr, Mayer JG, Engh CA (1989) Femoral fracture during non-cemented total hip arthroplasty. J Bone Joint Surg (Am) 71-A:1135–1142Google Scholar
  21. 21.
    Scott RD, Turner RH, Leitzes SM, Aufranc OE (1975) Femoral fractures in conjunction with total hip replacement. J Bone Joint Surg (Am) 57-A:494–501Google Scholar
  22. 22.
    Sharkey PF, Hozack WJ, Booth RE, Rothman RH (1992) Intraoperative femoral fractures in cementless total hip arthroplasty. Orthop Rev 21:337–342PubMedGoogle Scholar
  23. 23.
    Singh M, Nagrath AR, Maini PS (1970) Changes in the Trabecular Pattern of the Upper End of the Femur as an Index of Osteoporosis. J Bone Joint Surg (Am) 52-A:457–467Google Scholar
  24. 24.
    Taylor MM, Meyers MH, Harvey JP (1978) Intraoperative femur fractures during total hip replacement. Clin Orthop 137:96–103PubMedGoogle Scholar
  25. 25.
    Toni A, Ciaroni D, Sudanese A, Femino F, Marraro MD, Bueno Lozano AL, Giunti A (1994) Incidence of intraoperative femoral fracture. Straight-stemmed versus anatomic cementless total hip arthroplasty. Acta Orthop Belg 60:43–54PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ricardo Fernandez-Fernandez
    • 1
  • Elena García-Elias
    • 1
  • Enrique Gil-Garay
    • 1
  1. 1.Servicio de Cirugía Ortopédica y TraumatologíaHospital Universitario La PazMadridSpain

Personalised recommendations