Advertisement

International Orthopaedics

, Volume 31, Issue 3, pp 309–313 | Cite as

The efficacy of autologous platelet gel in pain control and blood loss in total knee arthroplasty

An analysis of the haemoglobin, narcotic requirement and range of motion
  • Michael J. Gardner
  • Demetris Demetrakopoulos
  • Paul R. Klepchick
  • Pekka A. Mooar
Original Paper

Abstract

Biological materials used to assist in haemostasis following total knee arthroplasty have been the subject of much recent research. Autologous platelet gel is a substance that is derived from platelet-rich plasma extracted from the patient's blood and centrifuged perioperatively, and is applied to exposed tissues, synovium and the lining of the wound at closure. Concentrating and applying these factors directly to the wound at the end of a total knee arthroplasty procedure may lead to more complete haemostasis, a reduction in perioperative blood loss, accelerated tissue repair and decreased postoperative pain. In this study, 98 unilateral total knee arthroplasties were evaluated retrospectively, 61 of which involved the intaroperative use of platelet gel, and 37 of which served as control subjects. Outcomes analysed were postoperative haemoglobin changes, intravenous and oral narcotic requirements, range of motion on discharge and total days in hospital. Patients receiving platelet gel during surgery had less postoperative blood loss as measured by differences in the preoperative and postoperative haemoglobin on day 3 (2.7 vs. 3.2 g/dl; P=0.026). The narcotic requirement was less in the platelet gel group for both intravenous (17.0 vs. 36.3 mg/day; P=0.024) and oral (1.84 vs. 2.75 tabs/day; P=0.063) medication. This group also achieved a higher range of motion prior to discharge (78.2 vs. 71.9; P=0.052) and were discharged an average of 1 day earlier than their control counterparts. Though further prospective trials are necessary, this study indicates that the application of autologous platelet gel may lead to improved haemostasis, better pain control and a shortened hospital stay.

Keywords

Total Knee Arthroplasty Buffy Coat Postoperative Blood Loss Postoperative Haemoglobin Tourniquet Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Le gel de plaquettes autologues est une substance dérivée des plaquettes plasmatiques extraites du sang du patient et centrifugées dans la période péri-opératoire, destiné à être appliquée sur les tissus exposés , la synoviale, et la ligne d’incision à la fermeture. Le but est d’avoir une meilleure hémostase, une réduction de la perte sanguine, une accélération de la réparation tissulaire et une diminution des douleurs post-opératoires. Dans cette étude 98 arthroplasties totales de genou ont été évaluées rétrospectivement, avec utilisation du gel plaquettaire dans 61 cas, les 37 autres servant de groupe témoin. Les éléments étudiés étaient le taux d’hémoglobine, la prise orale ou intraveineuse d’antalgiques et la durée d’hospitalisation. Les patients recevant le gel avaient moins de perte sanguine, mesurée sur le taux d’hémoglobine pré-opératoire et au 3eme jour ( 2,7 vs 3,2 g/dl; P=0,026). La nécessité d’antalgiques était moindre dans le groupe avec gel tant par vois orale (1,84 vs. 2,75 tabs/j; P=0,063) que par voie veineuse (17,0 vs. 36,3 mg/j; P=0,024). Le groupe avec gel atteignait une meilleure amplitude avant le départ (78,2° vs 71,9°; P=0,052) et celui-ci se situait en moyenne un jour plus tôt que dans l’autre groupe. Bien que des essais prospectifs restent nécessaires, l’application du gel plaquettaire semble pouvoir améliorer l’hémostase, le contrôle de la douleur et raccourcir la durée d’hospitalisation.

References

  1. 1.
    Ecker ML, Lotke PA (1993) Wound healing complications. In: Rand JA (ed) Total knee arthroplasty. Raven Press, New YorkGoogle Scholar
  2. 2.
    Bengston S, Knutson K, Lidgren L (1989) Treatment of infected knee arthroplasty. Clin Orthop Relat Res 173–178Google Scholar
  3. 3.
    Dennis DA (1997) Wound complications in total knee arthroplasty. Instr Course Lect 46:165–169PubMedGoogle Scholar
  4. 4.
    Insall J, Aglietti P (1980) A 5- to 7-year follow-up of unicondylar arthroplasty. J Bone Joint Surg Am 62:1329–1337PubMedGoogle Scholar
  5. 5.
    Weiss AP, Krackow KA (1993) Persistent wound drainage after primary total knee arthroplasty. J Arthroplast 8:285–289Google Scholar
  6. 6.
    Berman AT, Geissele AE, Bosacco SJ (1988) Blood loss with total knee arthroplasty. Clin Orthop Relat Res 137–138Google Scholar
  7. 7.
    Lotke PA, Faralli VJ, Orenstein EM, Ecker ML (1991) Blood loss after total knee replacement. Effects of tourniquet release and continuous passive motion. J Bone Joint Surg Am 73:1037–1040PubMedGoogle Scholar
  8. 8.
    Mylod AG Jr, France MP, Muser DE, Parsons JR (1990) Perioperative blood loss associated with total knee arthroplasty. A comparison of procedures performed with and without cementing. J Bone Joint Surg Am 72:1010–1012PubMedGoogle Scholar
  9. 9.
    Levy O, Martinowitz U, Oran A, Tauber C, Horoszowski H (1999) The use of fibrin tissue adhesive to reduce blood loss and the need for blood transfusion after total knee arthroplasty. A prospective, randomized, multicenter study. J Bone Joint Surg Am 81:1580–1588PubMedGoogle Scholar
  10. 10.
    Birkmeyer JD, Goodnough LT, AuBuchon JP, Noordsij PG, Littenberg B (1993) The cost-effectiveness of preoperative autologous blood donation for total hip and knee replacement. Transfusion 33:544–551PubMedCrossRefGoogle Scholar
  11. 11.
    Etchason J, Petz L, Keeler E et al (1995) The cost effectiveness of preoperative autologous blood donations. N Engl J Med 332:719–724PubMedCrossRefGoogle Scholar
  12. 12.
    Hersekli MA, Akpinar S, Ozkoc G et al (2004) The timing of tourniquet release and its influence on blood loss after total knee arthroplasty. Int Orthop 28:138–141PubMedCrossRefGoogle Scholar
  13. 13.
    Jorn LP, Lindstrand A, Toksvig-Larsen S (1999) Tourniquet release for haemostasis increases bleeding. A randomized study of 77 knee replacements. Acta Orthop Scand 70:265–267PubMedCrossRefGoogle Scholar
  14. 14.
    Christodoulou AG, Ploumis AL, Terzidis IP et al (2004) The role of timing of tourniquet release and cementing on perioperative blood loss in total knee replacement. Knee 11:313–317PubMedCrossRefGoogle Scholar
  15. 15.
    Ryu J, Sakamoto A, Honda T, Saito S (1997) The postoperative drain-clamping method for haemostasis in total knee arthroplasty. Reducing postoperative bleeding in total knee arthroplasty. Bull Hosp Joint Dis 56:251–254Google Scholar
  16. 16.
    Wang GJ, Hungerford DS, Savory CG et al (2001) Use of fibrin sealant to reduce bloody drainage and haemoglobin loss after total knee arthroplasty: a brief note on a randomized prospective trial. J Bone Joint Surg Am 83-A:1503–1505PubMedGoogle Scholar
  17. 17.
    Akizuki S, Yasukawa Y, Takizawa T (1997) A new method of haemostasis for cementless total knee arthroplasty. Bull Hosp Joint Dis 56:222–224Google Scholar
  18. 18.
    Mo X, Iwata H, Matsuda S, Ikada Y (2000) Soft tissue adhesive composed of modified gelatin and polysaccharides. J Biomater Sci Polym Ed 11:341–351PubMedCrossRefGoogle Scholar
  19. 19.
    Hino M, Ishiko O, Honda KI et al (2000) Transmission of symptomatic parvovirus B19 infection by fibrin sealant used during surgery. Br J Haematol 108:194–195PubMedCrossRefGoogle Scholar
  20. 20.
    Jackson MR (2001) Fibrin sealants in surgical practice: an overview. Am J Surg 182:1S–7SPubMedCrossRefGoogle Scholar
  21. 21.
    Kawamura M, Sawafuji M, Watanabe M, Horinouchi H, Kobayashi K (2002) Frequency of transmission of human parvovirus B19 infection by fibrin sealant used during thoracic surgery. Ann Thorac Surg 73:1000–1098CrossRefGoogle Scholar
  22. 22.
    Hosgood G (1993) Wound healing. The role of platelet-derived growth factor and transforming growth factor beta. Vet Surg 22:490–495PubMedGoogle Scholar
  23. 23.
    Knighton DR, Hunt TK, Thakral KK, Goodson WH 3rd (1982) Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis. Ann Surg 196:379–388PubMedCrossRefGoogle Scholar
  24. 24.
    Sanchez AR, Sheridan PJ, Kupp LI (2003) Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants 18:93–103PubMedGoogle Scholar
  25. 25.
    Mustoe TA, Pierce GF, Morishima C, Deuel TF (1991) Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87:694–703PubMedCrossRefGoogle Scholar
  26. 26.
    Marx RE, Carlson ER, Eichstaedt RM et al (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:638–646PubMedCrossRefGoogle Scholar
  27. 27.
    Anitua E (2001) The use of plasma-rich growth factors (PRGF) in oral surgery. Pract Proced Aesthet Dent 13:487–893; quiz 487–493PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael J. Gardner
    • 1
    • 2
  • Demetris Demetrakopoulos
    • 1
  • Paul R. Klepchick
    • 3
  • Pekka A. Mooar
    • 4
  1. 1.Department of Orthopaedic SurgeryHospital for Special SurgeryNew YorkUSA
  2. 2.Hospital for Special SurgeryNew YorkUSA
  3. 3.Department of RadiologyUniversity of PittsburghPittsburghUSA
  4. 4.Department of Orthopaedic SurgeryTemple UniversityPhiladelphiaUSA

Personalised recommendations