International Orthopaedics

, Volume 30, Issue 6, pp 525–531

Bone substitution in revision hip replacement

Original Paper

Abstract

The aim of this retrospective study was to report the preliminary results of femoral peri-prosthetic bone defect reconstruction with a synthetic bone substitute. Twenty-one revisions of the femoral component in 20 patients were evaluated. The mean age at operation was 65.7 years (range, 30 to 79 years). Preoperative femoral deficiencies were rated grade II in 7 cases and grade III in 14 cases according to the SOFCOT classification. None was rated grade IV. Femoral revision was indicated for loosening in 18 hips (including 8 septic cases), femoral osteolysis (1 hip), persistent pain (1 hip) and recurrent dislocation (1 hip). Once the loose prosthesis had been removed, calcium phosphate ceramic (CPC) granules (14 cases) or ceramic granules + cancellous allograft (5 cases) or autograft (2) were firmly impacted in the femoral canal. The stem was standard and always cemented using modern cementing technique. At a mean follow-up of 36 months (range, 14 to 76 months), 90% of the hips were rated good or very good according to the Merle d’Aubigné score. Two diaphyseal femoral fractures occurred and later united. Two hips required re-revision (aseptic loosening; septic recurrence). The absence of radiological osteolysis in 17 cases suggested direct bonding between ceramic granules and bone. Stem subsidence occurred in two cases and was limited (5 and 8 mm). Femoral bone reconstruction using impacted CPC or CPC in conjunction with bone graft in revision hip replacement commonly provided restoration of the bone stock in the short to mid-term. Further long-term studies will be necessary to support this conclusion.

Résumé

Le but de cette étude rétrospective est de rapporter les résultats préliminaires de la reconstruction des défects osseux fémoraux péri prothétiques avec des substituts osseux. Vingt et un révisions du composant fémoral chez 20 patients ont été évaluées de la sorte. L’âge moyen de l’intervention était de 65,7 ans (30 à 79). Les pertes de substances osseuses préopératoires ont été classées selon la classification de la SOFCOT : 7 cas de grade II, 14 cas de grade III, aucun cas de grade IV. L’indication opératoire était secondaire à un descellement dans 18 hanches (dont 8 descellements septiques), à une ostéolyse fémorale, à une douleur persistante et à une luxation récidivante. Après ablation du composant fémoral descellé des granules de calcium, phosphate, céramique, CPC ont été mises en place dans 14 cas, association de granules céramiques et d’os spongieux (allogreffe) dans 5 cas ou d’autogreffes dans deux cas. La céramique et l’os spongieux ont été impactés dans le fut fémoral. La pièce fémorale a toujours été une prothèse standard en utilisant les techniques de cimentation moderne. Après un suivi moyen de 36 mois (14 à 76 mois), 90% hanches ont été classées avec un résultat bon ou très bon selon le score de Postel Merle d’Aubigné. Deux fractures diaphysaires sont survenues et deux hanches ont nécessité une reprise (une pour descellement aseptique et une pour récidive de l’infection). Dans 17 cas nous n’avons constaté aucune ostéolyse radiologique. Une migration de la tige a été constatée dans deux cas mais de façon limitée (5 à 8 mm). La reconstruction osseuse en utilisant des granules CPC impactées ou des granules CPC mélangées à des greffons osseux dans les révisions de prothèses totales de hanche entraîne de façon habituelle une bonne restauration du stock osseux à court et moyen terme. Des études à long terme seront nécessaires pour confirmer cette conclusion.

References

  1. 1.
    Blom AW, Grimm B, Cunningham J, Miles AW, Learmonth ID (2002) In vitro testing of Bonesave, a ceramic bone graft substitute for use in impaction grafting. In: Bioceramics 14, Trans Tech Publications, Zurich, pp 417–420Google Scholar
  2. 2.
    Braye F, Weber G, Irigaray JL, Frayssinet P (1997) Osseointegration in cortical sheep bone of calcium phosphate implants evaluated by PIXE method and histology. J Biomed Mater Res 36:315–324PubMedCrossRefGoogle Scholar
  3. 3.
    Brooker AF, Bowerman JW, Robinson RA, Riley LH Jr (1973) Ectopic ossification following total hip replacement: incidence and a method of classification. J Bone Joint Surg (Am) 55:1629Google Scholar
  4. 4.
    Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24:379–396PubMedCrossRefGoogle Scholar
  5. 5.
    De Lee JG, Charnley J (1976) Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop 121:20–32Google Scholar
  6. 6.
    Dunlop DG, Brewster NT, Madabhushi SPG, Usmani AS, Pankaj P, Howie CR (2003) Techniques to improve the shear strength of impacted bone graft. J Bone Joint Surg (Am) 85:639–646Google Scholar
  7. 7.
    Eldridge JD, Smith EJ, Hubble MJ, Whitehouse SL, Learmonth ID (1997) Massive early subsidence following femoral impaction grafting. J Arthroplasty 12:535–540PubMedCrossRefGoogle Scholar
  8. 8.
    Fetzer GB, Callaghan JJ, Templeton JE, Goetz DD, Sullivan PM, Johnston RC (2001) Impaction allografting with cement for extensive femoral bone loss in revision hip surgery: a 4- to 8-year follow-up study. J Arthroplasty 16:195–202PubMedCrossRefGoogle Scholar
  9. 9.
    Franzen H, Toksvig-Larsen S, Lidgren L, Onnerfalt R (1995) Early migration of femoral components revised with impacted cancellous allografts and cement. A preliminary report of five patients. J Bone Joint Surg (Br) 77:862–864Google Scholar
  10. 10.
    Frayssinet P, Trouillet JL, Rouquet N, Azimus E, Autefage A (1993) Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials 14:423–429PubMedCrossRefGoogle Scholar
  11. 11.
    Gie GA, Linder L, Ling RS, Simon JP, Slooff TJ, Timperley AJ (1993) Impacted cancellous allografts and cement for revision total hip arthroplasty. J Bone Joint Surg (Br) 75:14–21Google Scholar
  12. 12.
    Grimm B, Blom AW, Miles AW, Turner IG (2002) In vitro endurance testing of bone graft materials for impaction grafting. In: Bioceramics 14, Trans Tech Publications, Zurich, pp 375–378Google Scholar
  13. 13.
    Gruen TA, Mc Neice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components: A radiographic analysis of loosening. Clin Orthop 141:17–27PubMedGoogle Scholar
  14. 14.
    Halliday BR, English HW, Timperley AJ, Gie GA, Ling RS (2003) Femoral impaction grafting with cement in revision total hip replacement. Evolution of the technique and results. J Bone Joint Surg (Br) 85:809–817Google Scholar
  15. 15.
    Karrholm J, Hultmark P, Carlsson L, Malchau H (1999) Subsidence of a non-polished stem in revisions of the hip using impaction allograft. Evaluation with radiostereometry and dual-energy X-ray absorptiometry. J Bone Joint Surg (Br) 81:135–142CrossRefGoogle Scholar
  16. 16.
    Langlais F, Kerboull M, Sedel L, Ling RS (2003) The “French paradox”. J Bone Joint Surg (Br) 85:17–20CrossRefGoogle Scholar
  17. 17.
    Meding JB, Ritter MA, Keating EM, Faris PM (1997) Impaction bone-grafting before insertion of a femoral stem with cement in revision total hip arthroplasty. A minimum two-year follow-up study. J Bone Joint Surg (Am) 79:1834–1841Google Scholar
  18. 18.
    Merle d’Aubigné R (1970) Cotation chiffrée de la fonction de la hanche. Rev Chir Orthop 56:481–486Google Scholar
  19. 19.
    Migaud H, Jardin C, Fontaine C, Pierchon F, d’Herbomez O, Duquennoy A (1997) Reconstruction fémorale par des allogreffes spongieuses impactées et protégées par un treillis métallique au cours des révisions de prothèse totale de hanche. 19 cas au recul moyen de 83 mois. Rev Chir Orthop 83:360–367PubMedGoogle Scholar
  20. 20.
    Mikhail WE, Wretenberg PF, Weidenhielm LR, Mikhail MN (1999) Complex cemented revision using polished stem and morselized allograft. Minimum 5-years follow-up. Arch Orthop Trauma Surg 119:288–291PubMedCrossRefGoogle Scholar
  21. 21.
    Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S (2000) Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 51:37–46PubMedCrossRefGoogle Scholar
  22. 22.
    Oonishi H, Iwaki Y, Kin N, Kushitani S, Murata N, Wakitani S, Imoto K (1997) Hydroxyapatite in revision of total hip replacements with massive acetabular defects: 4- to 10-year clinical results. J Bone Joint Surg (Br) 79:87–92CrossRefGoogle Scholar
  23. 23.
    Oonishi H, Kadoya Y, Iwaki H, Kin N (2000) Hydroxyapatite granules interposed at bone-cement interface in total hip replacements: histological study of retrieved specimens. J Biomed Mater Res 53:174–180PubMedCrossRefGoogle Scholar
  24. 24.
    Ornstein E, Atroshi I, Franzen H, Johnsson R, Sandquist P, Sundberg M (2001) Results of hip revision using the Exeter stem, impacted allograft bone, and cement. Clin Orthop 389:126–133PubMedGoogle Scholar
  25. 25.
    Ornstein E, Franzen H, Johnsson R, Sundberg M (2000) Radiostereometric analysis in hip revision surgery–optimal time for index exafsmination: six patients revised with impacted allografts and cement followed weekly for 6 weeks. Acta Orthop Scand 71:360–364PubMedCrossRefGoogle Scholar
  26. 26.
    Passuti N, Daculsi G, Rogez JM, Martin S, Bainvel JV (1989) Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop 248:169–176PubMedGoogle Scholar
  27. 27.
    Pekkarinen J, Alho A, Lepisto J, Ylikoski M, Ylinen P, Paavilainen T (2000) Impaction bone grafting in revision hip surgery. A high incidence of complications. J Bone Joint Surg (Br) 82:103–107CrossRefGoogle Scholar
  28. 28.
    Pierchon F, Migaud H, Duquennoy A (1993) Reconstitution du stock osseux fémoral dans les descellements de prothèse totale de hanche. Acta Orthop Belg 59:278–286PubMedGoogle Scholar
  29. 29.
    Vives P, De Lestang M, Paclot R, Cazeneuve JF (1989) Le descellement aseptique : définitions, classification. Rev Chir Orthop 75:29–31Google Scholar
  30. 30.
    Walker PS, Mai SF, Cobb AG, Bentley G, Hua J (1995) Prediction of clinical outcome of THR from migration measurements on standard radiographs. A study of cemented Charnley and Stanmore femoral stems. J Bone Joint Surg (Br) 77:705–714Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryLariboisiere Hospital, University of Paris VIIParisFrance
  2. 2.Department of Orthopaedic SurgeryEuropean Teaching HospitalParisFrance

Personalised recommendations