Interleukin-38 in colorectal cancer: a potential role in precision medicine

  • Feier Chen
  • Feng Zhang
  • Zhenyu Tan
  • Brett D. Hambly
  • Shisan BaoEmail author
  • Kun TaoEmail author
Original Article


Colorectal cancer (CRC) is a leading cause of cancer-related death, partly due to a lack of reliable biomarkers for early diagnosis. To improve the outcome of CRC, it is critical to provide diagnosis at an early stage using promising sensitive/specific marker(s). Using immunohistochemistry and histopathology, IL-38 expression was determined in tissue arrays of CRC with different TNM status and depth of tumour invasion. Data were compared to IL-38 in adjacent non-cancer tissue and correlated with demographic information, including survival. A substantial reduction of IL-38 was detected in the CRC tissue compared to adjacent non-cancer colonic tissue. IL-38 correlated with the extent of tumour differentiation (P < 0.0001); CRC location in the left side of the colon (P < 0.05), and smaller tumour size (≤ 5 cm; P < 0.05). Receiver operating characteristic (ROC) curve analysis demonstrated both high specificity and high sensitivity of IL-38 for the diagnosis of CRC [area under the curve (AUC) = 0.89)]. By sub-group analysis, AUC of IL-38 for the diagnosis of CRC was higher in poorly differentiated, right-sided CRC or tumour size > 5 cm (all AUC > 0.9). Significantly, longer survival was observed for the IL-38high versus the IL-38low groups in CRC patients (P = 0.04). Survival was also longer for IL-38high patients with lymph node metastasis (P = 0.01) and TNM stage III-IV (P = 0.02). Multivariate analysis demonstrated that IL-38 (P = 0.05) and tumour invasion depth (P = 0.04) were independent factors for survival. High IL38 in CRC is an independent prognostic factor for the longer survival of CRC patients. IL-38 signalling may constitute a therapeutic target in CRC.


IL-38 Colorectal cancer Prognosis Potential target 



Area under the curve


AUC of the ROC curve


Colorectal cancer


Cytotoxic T-lymphocyte-associated protein 4


Dendritic cells




Mitogen-activated protein kinase


Nuclear factor kappa B


Programmed cell death protein 1


Receiver operating characteristic


Tumour, node and metastasis



The authors acknowledge support from the staff of the Department of Pathology, Tongren Hospital, Shanghai Jiao University School of Medicine, and staff of the Discipline of Pathology, Sydney Medical School, The University of Sydney.

Author contributions

FC: performed the experiment, analysed the data, and wrote the manuscript. FZ and ZT: performed histopathology. BH, SB and KT: designed the experiment and critically reviewed the manuscript. SB, and KT: provided financial support for the experiment.


Shanghai Jiaotong University Medical Professional Cross Fund (Kun Tao) and the Joint Research Initiative Grant from Shanghai Jiaotong University, China (Kun Tao and Shisan Bao). The Natural Science Foundation of Shanghai, China 16ZR1432600 (Kun Tao), School of Medical Sciences, The University of Sydney Small Equipment Grant (Shisan Bao) and SJTU Research Project grant, The University of Sydney 2019 (Shisan Bao) are acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval and ethical standards

Our current experiment has been approved by the Human Ethics Committee of Tongren Hospital, Shanghai Jiaotong University School of Medicine for the use of the tissues and the associated deidentified clinical data (ZH2018ZDA33). The guidelines of the Declaration of Helsinki on Medical Research involving human subjects has been strictly adhered to.

Informed consent

The oral consent for surgery included consent for the tissues to be used for diagnostic and research purposes in a deidentified manner. A written explanation of the surgical procedures and the potential research use of the tissues was provided to all patients prior to surgery. All of the patients were adults who were older than 16 years.

Supplementary material

262_2019_2440_MOESM1_ESM.pdf (134 kb)
Supplementary material 1 (PDF 133 kb)


  1. 1.
    Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Speizer FE, Willett WC (1994) A prospective study of family history and the risk of colorectal cancer. N Engl J Med 331(25):1669–1674. CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Desantis C, Jemal A (2014) Colorectal cancer statistics. CA Cancer J Clin 64(2):104–117. CrossRefPubMedGoogle Scholar
  3. 3.
    Welch HG, Robertson DJ (2016) Colorectal cancer on the decline-why screening can’t explain it all. N Engl J Med 374(17):1605–1607. CrossRefPubMedGoogle Scholar
  4. 4.
    Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:86. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J (2017) Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 17(4):268. CrossRefPubMedGoogle Scholar
  6. 6.
    De Robertis M, Poeta ML, Signori E, Fazio VM (2018) Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol. CrossRefPubMedGoogle Scholar
  7. 7.
    Mager LF, Wasmer MH, Rau TT, Krebs P (2016) Cytokine-induced modulation of colorectal cancer. Front Oncol 6:96. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dinarello C, Arend W, Sims J, Smith D, Blumberg H, O’Neill L, Goldbach-Mansky R, Pizarro T, Hoffman H, Bufler P, Nold M, Ghezzi P, Mantovani A, Garlanda C, Boraschi D, Rubartelli A, Netea M, van der Meer J, Joosten L, Mandrup-Poulsen T, Donath M, Lewis E, Pfeilschifter J, Martin M, Kracht M, Muehl H, Novick D, Lukic M, Conti B, Solinger A, Kelk P, van de Veerdonk F, Gabel C (2010) IL-1 family nomenclature. Nat Immunol 11(11):973. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Takeuchi Y, Seki T, Kobayashi N, Sano K, Shigemura T, Shimojo H, Matsumoto K, Agematsu K (2018) Analysis of serum IL-38 in juvenile-onset systemic lupus erythematosus. Mod Rheumatol. CrossRefPubMedGoogle Scholar
  10. 10.
    Yu Z, Liu J, Zhang R, Huang X, Sun T, Wu Y, Hambly BD, Bao S (2017) IL-37 and 38 signalling in gestational diabetes. J Reprod Immunol 124:8–14. CrossRefPubMedGoogle Scholar
  11. 11.
    Takada K, Okamoto T, Tominaga M, Teraishi K, Akamine T, Takamori S, Katsura M, Toyokawa G, Shoji F, Okamoto M, Oda Y, Hoshino T, Maehara Y (2017) Clinical implications of the novel cytokine IL-38 expressed in lung adenocarcinoma: possible association with PD-L1 expression. PLoS One 12(7):e0181598. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Novellasdemunt L, Antas P, Li VS (2015) Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 309(8):C511–C521. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling KC, Cunningham JM, Boardman LA, Qian C, Christensen E, Schmidt SS, Roche PC, Smith DI, Thibodeau SN (2000) Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 26(2):146–147. CrossRefPubMedGoogle Scholar
  14. 14.
    Chen L, Zhu C, Li F, Wang Y, Bao R, Cao Z, Xiang X, Yan L, Lin L, Zhao G, Xie Q, Bao S, Wang H (2018) Correlation between hepatic human males absent on the first (hMOF) and viral persistence in chronic hepatitis B patients. Cell Biosci 8:14. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhou T, Sun Y, Li M, Ding Y, Yin R, Li Z, Xie Q, Bao S, Cai W (2018) Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway. Cell Death Dis 9(6):590. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chami B, Yeung A, Buckland M, Liu H, Fong GM, Tao K, Bao S (2017) CXCR3 plays a critical role for host protection against Salmonellosis. Sci Rep 7(1):10181. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cao Z, Li Z, Wang H, Liu Y, Xu Y, Mo R, Ren P, Chen L, Lu J, Li H, Zhuang Y, Liu Y, Wang X, Zhao G, Tang W, Xiang X, Cai W, Liu L, Bao S, Xie Q (2017) Algorithm of Golgi protein 73 and liver stiffness accurately diagnoses significant fibrosis in chronic HBV infection. Liver Int 37(11):1612–1621. CrossRefPubMedGoogle Scholar
  18. 18.
    Ueno H, Kajiwara Y, Shimazaki H, Shinto E, Hashiguchi Y, Nakanishi K, Maekawa K, Katsurada Y, Nakamura T, Mochizuki H, Yamamoto J, Hase K (2012) New criteria for histologic grading of colorectal cancer. Am J Surg Pathol 36(2):193–201. CrossRefPubMedGoogle Scholar
  19. 19.
    Chen CH, Hsieh MC, Hsiao PK, Lin EK, Lu YJ, Wu SY (2017) A critical reappraisal for the value of tumor size as a prognostic variable in rectal adenocarcinoma. J Cancer 8(10):1927–1934. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ghidini M, Petrelli F, Tomasello G (2018) Right versus left colon cancer: resectable and metastatic disease. Curr Treat Options Oncol 19(6):31. CrossRefPubMedGoogle Scholar
  21. 21.
    Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. Lancet 383(9927):1490–1502. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    van de Veerdonk FL, de Graaf DM, Joosten LA, Dinarello CA (2018) Biology of IL-38 and its role in disease. Immunol Rev 281(1):191–196. CrossRefPubMedGoogle Scholar
  23. 23.
    Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140(6):1807–1816. CrossRefPubMedGoogle Scholar
  24. 24.
    Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771. CrossRefPubMedGoogle Scholar
  25. 25.
    Takenaka SI, Kaieda S, Kawayama T, Matsuoka M, Kaku Y, Kinoshita T, Sakazaki Y, Okamoto M, Tominaga M, Kanesaki K, Chiba A, Miyake S, Ida H, Hoshino T (2015) IL-38: a new factor in rheumatoid arthritis. Biochem Biophys Rep 4:386–391. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rudloff I, Godsell J, Nold-Petry CA, Harris J, Hoi A, Morand EF, Nold MF (2015) Brief report: interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol 67(12):3219–3225. CrossRefPubMedGoogle Scholar
  27. 27.
    Ciccia F, Accardo-Palumbo A, Alessandro R, Alessandri C, Priori R, Guggino G, Raimondo S, Carubbi F, Valesini G, Giacomelli R, Rizzo A, Triolo G (2015) Interleukin-36alpha axis is modulated in patients with primary Sjogren’s syndrome. Clin Exp Immunol 181(2):230–238. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC, Rolli-Derkinderen M, Bourreille A, Vigne S, Gabay C, Palmer G, Le Goff B, Blanchard F (2016) Distinct expression of interleukin (IL)-36alpha, beta and gamma, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol 184(2):159–173. CrossRefPubMedGoogle Scholar
  29. 29.
    Ummarino D (2017) Experimental arthritis: IL-38 promotes anti-inflammatory effects. Nat Rev Rheumatol 13(5):260. CrossRefPubMedGoogle Scholar
  30. 30.
    Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244. CrossRefPubMedGoogle Scholar
  31. 31.
    Catalan-Dibene J, McIntyre LL, Zlotnik A (2018) Interleukin 30 to interleukin 40. J Interferon Cytokine Res 38(10):423–439. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vigne S, Palmer G, Martin P, Lamacchia C, Strebel D, Rodriguez E, Olleros ML, Vesin D, Garcia I, Ronchi F, Sallusto F, Sims JE, Gabay C (2012) IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4 + T cells. Blood 120(17):3478–3487. CrossRefPubMedGoogle Scholar
  33. 33.
    Lee MS, Menter DG, Kopetz S (2017) Right versus left colon cancer biology: integrating the consensus molecular subtypes. J Natl Compr Cancer Netw 15(3):411–419CrossRefGoogle Scholar
  34. 34.
    Venook AP (2017) Right-sided vs left-sided colorectal cancer. Clin Adv Hematol Oncol 15(1):22–24PubMedGoogle Scholar
  35. 35.
    Kato T, Alonso S, Muto Y, Perucho M, Rikiyama T (2016) Tumor size is an independent risk predictor for metachronous colorectal cancer. Oncotarget 7(14):17896–17904. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Saha S, Kanaan MN, Shaik M, Abadeer B, Korant A, Krishnamoorthy M, Kaushal S, Singh TT, Arora ML, Wiese D (2013) Tumor size as a prognostic factor for patients with colon cancer undergoing sentinel lymph node mapping and conventional surgery. J Clin Oncol. CrossRefGoogle Scholar
  37. 37.
    Marsland BJ, Trompette A, Gollwitzer ES (2015) The gut-lung axis in respiratory disease. Ann Am Thorac Soc 12(Suppl 2):S150–S156. CrossRefPubMedGoogle Scholar
  38. 38.
    Lin JH, Giovannucci E (2010) Sex hormones and colorectal cancer: what have we learned so far? J Natl Cancer Inst 102(23):1746–1747. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rogers AC, Winter DC, Heeney A, Gibbons D, Lugli A, Puppa G, Sheahan K (2016) Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer. Br J Cancer 115(7):831–840. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyTongren Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
  2. 2.Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins CentreThe University of SydneySydneyAustralia

Personalised recommendations