Cancer Immunology, Immunotherapy

, Volume 68, Issue 12, pp 1959–1969 | Cite as

Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma

  • Yaping Xu
  • Fei Fang
  • Hui Jiao
  • Xiaohui Zheng
  • Liyue Huang
  • Xue Yi
  • Wenxiu ZhaoEmail author
Original Article


Hepatic stellate cells (HSCs) are important stromal cells and pivotal mediators involved in the pathogenesis and immunosuppression of hepatocellular carcinoma (HCC). The liver has been demonstrated to be a site for accumulation of tumor-induced myeloid-derived suppressor cells (MDSCs). We previously reported that HSCs induced an increase in the number of MDSCs in HCC. However, how MDSCs are recruited in HCC remains largely unclear. In the present study, we found that HSC-conditioned medium (HSC-CM) induced bone marrow-derived cell and splenocyte migration, especially MDSC migration. Using chemokine-neutralizing antibodies and chemokine receptor inhibitors, we found that HSCs promoted MDSC migration through the SDF-1/CXCR4 axis. Subsequently, we used an orthotopic mouse liver tumor model to determine how HSCs mediated MDSC migration to HCC in vivo. The in vivo results indicated that pretreatment of MDSCs with a CXCR4 inhibitor or injection with SDF-1-knocked down HSCs inhibited MDSC migration to the spleen and liver of the tumor-bearing mice. Together, our findings indicate a central role for HSCs in MDSC migration mediated by the SDF-1/CXCR4 axis, thus revealing a potentially effective approach for modulating the tumor microenvironment by targeting HSCs in HCC.


Hepatic stellate cells Myeloid-derived suppressor cells Hepatocellular carcinoma SDF-1 CXCR4 Migration 



Complement component 3


CC chemokine ligand/chemokine receptor


CXC chemokine ligand/chemokine receptor


1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide


Granulocytic myeloid-derived suppressor cells


Hepatocellular carcinoma


HSC conditioned medium


Hepatic stellate cells


Interleukin-1 beta




In vivo imaging system


Myeloid-derived suppressor cells


Monocytic myeloid-derived suppressor cells


Programmed death ligand 1


Red blood cells


Stromal cell-derived factor 1


Author contributions

YX performed most of the experiments, analyzed the data, and wrote the manuscript. FF, HJ, XZ, LH, and XY assisted with and/or performed some of the experiments and revised the manuscript. WZ contributed to the design of the experiments and analysis and interpretation of the data, and revised the manuscript.


This work was supported by grants from the National Nature Science Foundation of China (81602500 and 81572335); Outstanding Youth Science Research Personnel Training Plan of Fujian Province Colleges and Universities (2017); and Doctoral Start-up Foundation of Xiamen Medical College (K2016-07).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experimental protocols were performed in compliance with the Guidelines for the Institutional Animal Care and Use Committee of Xiamen University. (the date of animal research approval: 2015-02-26).

Animal source

BALB/c (H-2d, haplotype) mice aged 8–12 weeks were purchased from the National Rodent Laboratory Animal Resources, Shanghai, China.

Cell authentication

Not applicable because murine primary HSCs and MDSCs and murine HCC cell line H22 cells were used, which are lacking of short tandem repeat data. The H22 cells were purchased from Shanghai Cell Bank, Chinese Academy of Sciences.

Supplementary material

262_2019_2414_MOESM1_ESM.pdf (554 kb)
Supplementary material 1 (PDF 554 kb)


  1. 1.
    Zhang H, Li Z, Wang L, Tian G, Tian J, Yang Z, Cao G, Zhou H, Zhao L, Wu Z, Yin Z (2017) Critical role of myeloid-derived suppressor cells in tumor-induced liver immune suppression through inhibition of NKT cell function. Front Immunol 8:129. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schmid MC, Varner JA (2012) Myeloid cells in tumor inflammation. Vasc Cell 4(1):14. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Can Res 70(1):68–77. CrossRefGoogle Scholar
  6. 6.
    Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schmid MC, Avraamides CJ, Foubert P, Shaked Y, Kang SW, Kerbel RS, Varner JA (2011) Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res 71(22):6965–6975. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, Fein M, Rasch MG, Tan YX, Qiu J, Park J, Sinha P, Bissell MJ, Frengen E, Werb Z, Egeblad M (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21(4):488–503. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ilkovitch D, Lopez DM (2009) The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 69(13):5514–5521. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S, Zender L, Kapoor V, Felsher DW, Manns MP, Korangy F, Greten TF (2013) Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol 59(5):1007–1013. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Umansky V, Sevko A (2013) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron 6(2):169–177. CrossRefPubMedGoogle Scholar
  13. 13.
    Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411. CrossRefPubMedGoogle Scholar
  14. 14.
    Thompson AI, Conroy KP, Henderson NC (2015) Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC gastroenterology 15:63. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Aimaiti Y, Jin X, Shao Y, Wang W, Li D (2019) Hepatic stellate cells regulate hepatic progenitor cells differentiation via the TGF-beta1/Jagged1 signaling axis. J Cell Physiol 234(6):9283–9296. CrossRefPubMedGoogle Scholar
  16. 16.
    Ji F, Wang K, Zhang Y, Mao XL, Huang Q, Wang J, Ye L, Li Y (2019) MiR-542-3p controls hepatic stellate cell activation and fibrosis via targeting BMP-7. J Cell Biochem 120(3):4573–4581. CrossRefPubMedGoogle Scholar
  17. 17.
    Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fung JJ, Lu L, Qian S (2004) Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40(6):1312–1321. CrossRefPubMedGoogle Scholar
  18. 18.
    Chen CH, Kuo LM, Chang Y, Wu W, Goldbach C, Ross MA, Stolz DB, Chen L, Fung JJ, Lu L, Qian S (2006) In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 44(5):1171–1181. CrossRefPubMedGoogle Scholar
  19. 19.
    Chou HS, Hsieh CC, Yang HR, Wang L, Arakawa Y, Brown K, Wu Q, Lin F, Peters M, Fung JJ, Lu L, Qian S (2011) Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice. Hepatology 53(3):1007–1019. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hsieh CC, Chou HS, Yang HR, Lin F, Bhatt S, Qin J, Wang L, Fung JJ, Qian S, Lu L (2013) The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood 121(10):1760–1768. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hochst B, Schildberg FA, Sauerborn P, Gabel YA, Gevensleben H, Goltz D, Heukamp LC, Turler A, Ballmaier M, Gieseke F, Muller I, Kalff J, Kurts C, Knolle PA, Diehl L (2013) Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 59(3):528–535. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, You J, Fan J, Wang X (2011) Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 129(11):2651–2661. CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, Kuang P, Zhao B, Yin Z, Wang X (2014) Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest 94(2):182–191. CrossRefPubMedGoogle Scholar
  24. 24.
    Xu Y, Zhao W, Xu J, Li J, Hong Z, Yin Z, Wang X (2016) Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget 7(8):8866–8878. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhao W, Su W, Kuang P, Zhang L, Liu J, Yin Z, Wang X (2012) The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int J Oncol 41(2):457–464. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xu Y, Zhao W, Wu D, Xu J, Lin S, Tang K, Yin Z, Wang X (2014) Isolation of myeloid-derived suppressor cells subsets from spleens of orthotopic liver cancer-bearing mice by fluorescent-activated and magnetic-activated cell sorting: similarities and differences. Int J Clin Exp Pathol 7(11):7545–7553PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zollo M, Di Dato V, Spano D, De Martino D, Liguori L, Marino N, Vastolo V, Navas L, Garrone B, Mangano G, Biondi G, Guglielmotti A (2012) Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis 29(6):585–601. CrossRefPubMedGoogle Scholar
  28. 28.
    Karin N, Razon H (2018) The role of CCR28 in directing the mobilization and biological function of CD11b(+)Gr1(+)Ly6C(low) polymorphonuclear myeloid cells in cancer. Cancer Immunol Immunother CII 67(12):1949–1953. CrossRefPubMedGoogle Scholar
  29. 29.
    Liepelt A, Tacke F (2016) Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J Physiol Gastrointest Liver Physiol 311(2):G203–209. CrossRefPubMedGoogle Scholar
  30. 30.
    Shou D, Wen L, Song Z, Yin J, Sun Q, Gong W (2016) Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget 7(39):64505–64511. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhao W, Xu Y, Xu J, Wu D, Zhao B, Yin Z, Wang X (2015) Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially. Int Immunopharmacol 26(2):314–321. CrossRefPubMedGoogle Scholar
  32. 32.
    Xia Y, Chen R, Ye SL, Sun R, Chen J, Zhao Y (2011) Inhibition of T-cell responses by intratumoral hepatic stellate cells contribute to migration and invasion of hepatocellular carcinoma. Clin Exp Metastasis 28(7):661–674. CrossRefPubMedGoogle Scholar
  33. 33.
    Schildberg FA, Sharpe AH, Turley SJ (2015) Hepatic immune regulation by stromal cells. Curr Opin Immunol 32:1–6. CrossRefPubMedGoogle Scholar
  34. 34.
    Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, Ye Q, Lee JS, Kim JH, Greten TF, Wang XW (2015) Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 62(2):481–495. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Damianakou C, Tsokas C (1987) Clinical and technical characteristics of alginate hydrocolloid. Hellenika Stomatologika Chronika Hell Stomatol Ann 31(1):63–68Google Scholar
  36. 36.
    Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR36 expression controls the accumulation of human MDSCs in ovarian cancer environment. Can Res 71(24):7463–7470. CrossRefGoogle Scholar
  37. 37.
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Umansky V, Blattner C, Gebhardt C, Utikal J (2017) CCR38 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunol Immunother CII 66(8):1015–1023. CrossRefPubMedGoogle Scholar
  39. 39.
    Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, Han Y, Wu M, Zhang L, Horbinski CM, Ahmed AU, Lesniak MS (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, Kaplan RN, Mackall CL (2014) Disruption of CXCR1-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med 6(237):237ra267. CrossRefGoogle Scholar
  41. 41.
    Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN (2013) CXCR41-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24(5):631–644. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111(12):5457–5466. CrossRefPubMedGoogle Scholar
  43. 43.
    Li Y, Lu L, Qian S, Fung JJ, Lin F (2016) Hepatic stellate cells directly inhibit B cells via programmed death-ligand 1. J Immunol 196(4):1617–1625. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother CII 59(10):1593–1600. CrossRefPubMedGoogle Scholar
  45. 45.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fruci D, Lo Monaco E, Cifaldi L, Locatelli F, Tremante E, Benevolo M, Giacomini P (2013) T and NK cells: two sides of tumor immunoevasion. J Transl Med 11:30. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pyzer AR, Cole L, Rosenblatt J, Avigan DE (2016) Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer 139(9):1915–1926. CrossRefPubMedGoogle Scholar
  48. 48.
    Wang Y, Schafer CC, Hough KP, Tousif S, Duncan SR, Kearney JF, Ponnazhagan S, Hsu HC, Deshane JS (2018) Myeloid-derived suppressor cells impair B cell responses in lung cancer through IL-7 and STAT5. J Immunol 201(1):278–295. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B, Kendra K, Campbell A, Gautam S, Abood D, Landi I, Hsu V, Duggan M, Wesolowski R, Old M, Howard JH, Yu L, Stasik N, Olencki T, Muthusamy N, Tridandapani S, Byrd JC, Caligiuri M, Carson WE (2018) Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin Cancer Res 24(8):1891–1904. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Functional and Clinical Translational Medicine, Department of PhysiologyXiamen Medical CollegeXiamenChina
  2. 2.Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan HospitalXiamen UniversityXiamenChina
  3. 3.Xiamen Key Laboratory of Respiratory DiseasesXiamenChina

Personalised recommendations